发布时间:2010-08-30 阅读量:1738 来源: 我爱方案网 作者:
中心议题:
解决方案:
电磁兼容性反映了电子设备或系统在其电磁环境中符合要求运行并不对其环境的任何设备产生无法忍受的电磁干扰能力,它包含两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值即EMI(ElectromagneticInterference);另一方面是指设备对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性EMS(ElectromagneticSusceptibility),商用电气产品为取得某一市场的销售资格,其EMI水平必须通过强制性认证,即达到某一标准,如国际无线电干扰特别委员会的IECCISPRI4-1,欧洲的 EN55014-1,或中国的GB4343.1等等。各类标准事实上是等效的川。
1EMI产生的根源
对于由小型永磁直流电机驱动的各类产品,通常只有EMI的问题。EMI可分为传导干扰和辐射干扰:传导干扰是指干扰能量沿着电缆以干扰电压的形式传播;辐射干扰是指干扰能量以电磁波的形式通过空间将其信号藕合(干扰)到另一个电网络。
为限制永磁电机的EMI,必须搞清干扰源才能有效对电磁干扰加以抑制。在由永磁直流电机驱动的各种工业产品中,EMI的来源主要包括:
L1电机的火花
火花使换向区域附近的空气介质电离,在空气中形成带电粒子,形成电磁干扰;
L2非线性器件
可控硅、整流二极管以及晶体管开关的导通和截止的工作特性会产生高频谐波干扰;
1.3电机的磁路
过于饱和的磁路也会产生较大的电磁干扰。
在产品中加装滤波器以及采用各种屏蔽手段可以有效地抑制EMI,但从根源上消除干扰源的干扰同样重要。在上述各干扰源中,直流电机在换向过程中产生的火花,由于其成因复杂,在实际应用中常常难以控制。
表面上,电机生产过程中的各种不良工艺都会加剧运行中的火花,必须加以控制,如换向器表面的精车水平包括圆度、跳动、光洁度,转子的动平衡水平,此外,弹簧的压力以及碳刷的材质都会对火花的大小产生极大的影响。
理论上,火花产生的根源是换向中产生的各种电动势,包括电抗电势及变压器电势,换向片上的片间电压以及转子上的电枢反应等。这其中,电抗电势是最主要的。
换向时,电枢电流在极短的时间内变换方向,线圈电流的换向过程由图1简示。
2抑制电抗电势的方法
由上述分析可知,抑制永磁直流电机EMI的根本在于有效地削弱换向过程产生的电抗电势。当然,前提是必须保证电机生产工艺及电机在产品中装配的稳定性。这里仅限从理论上探究抑制电抗电势的方法。
根据(1),削弱电抗电势的手段包括调整定转子线圈匝数比或依靠增加换向片数来减少每线圈匝数以减小电感,或适当加大碳刷宽度以增加换向周期,另外,增大碳刷的电阻率亦可减小电抗电势对换向的阻碍。
但是,在工程实际中,上述条件只能非常有限的被满足。比如,匝数比太大会造成磁路过度饱和,反而会恶化EM1;同时过高的定子槽满率不仅会降低电机的过载能力,也会影响生产效率;又如,受限于生产工艺水平,换向片数也无法太大。至于碳刷电阻率,受发热限制,亦无法无限度提高。所以,设法在换向过程中产生一个与电抗电势反向的电动势将其抵消将是抑制火花和EMI的最有效的方法。
众所周知,直流电机在磁极间加装换向极可以产生与电抗电势相反的电势,但小型直流电机受空间所限,不便加装换向极,所以,绝大多数设计都采用逆电机转向偏移碳刷位置的方法来达到与加装换向极相同的效果[zJ。与偏移碳刷位置效果相同、精度更高、被现代生产实践应用更广泛的手段是,在转子绕
线的过程中直接产生磁场借偏。虽然国际国内各大电机制造公司及研究机构对电机的转子借偏角的定义不尽相同,但事实上却有同样的理论基础,这里不加赘述。
图3及图4分别表示了转子在借偏前后的电流分布:
借偏有其特定的方向性,即对于已经制造完毕的有借偏的转子,其借偏的作用只对电机在某单方向有效,换言之,若转向相反,则该借偏会恶化换向及EMI。其原理在于借偏角的方向必须与电机的转向一致,才可保证换向过程由借偏产生的电动势与电抗电动势向反。
借偏角度亦不可过大。由于借偏相当于减小了转子的有效匝数,过大的借偏角度需要更多的线圈匝数来弥补,过多的用铜(铝)势必增加损耗,降低效率;同时,过大的借偏有时反而不利于电抗电动势的抵消。在工程实际中,必须在火花抑制和电机性能中寻找最佳的平衡点,不可偏废。
必须指出,电机同其它工业产品一样,其最终的性能绝不仅仅决定于电磁设计和机械结构设计水平。事实上,制造水平及工艺稳定性是保证好的电机设计的根本。
以下举两例说明工艺对EMI的影响。
例1换向器的精车水平。
若生产厂家的换向器精车水平不足,造成成品电机转子换向器表面的圆度及跳动不良,则电机在高速运行中,碳刷与换向器表面不能保持良好的接触,时断时合,在断开的瞬间,电流被试图强制归零,这会造成很大的电抗电势,产生火花进而恶化EMI。
例2永磁体的充磁。
理想状态下,充磁后的两极应具有相同的磁场分布川,且以磁极中心线为界,两侧的磁场应具有单一的磁性。若充磁过程中,由于充磁工装的原因造成磁场分布混乱,如图5所示。
则会严重影响EMi,且不易被发现。以图5为例.两磁极在靠近中性线的位置处均有与该磁极极性相反的一段反波.仔细分析借偏的原理可知,该反波事实上相当于一个与正常换向极作用相反的附加磁极,当其被转子换向线圈切割时,产生的电动势与电抗电动势同向,也就是会恶化换向;当其分布角度超过借偏角度时,会完全抹杀借偏的作用。
抑制换向时产生的电抗电势对于小型直流电机EMI的抑制十分关键。在影响小型直流电机EMI的各项因素中,火花的控制历来是难度较大的工作。具体到工程实践,设计上必须完美平衡电机的换向和性能,工艺上必须保证应有的水平与稳定,才可以做出满足各个强制性认证的合格的工业产品。
在2025上海国际车展上,作为中国高端互连解决方案领军企业的中航光电(股票代码:002179),以整车电子电气架构革新者的姿态,携五大核心技术体系亮相,构建起覆盖"车-路-云"全场景的智能出行技术生态。
在智能汽车传感器领域,国产化突破迎来里程碑时刻——移远通信最新发布的77GHz毫米波雷达RD7702AC,以毫米级动作捕捉、多场景抗干扰和全链路国产化优势,率先打破外资品牌垄断格局。作为全球首款集成AR增强现实的脚踢雷达方案,该产品不仅将误触发率压降至0.1%以下,更通过岸达科技国产芯片组实现30%成本优化,同步拓展至舱内活体检测、侧门防撞等智能驾驶场景。在国产替代浪潮与4D成像雷达技术迭代的双重驱动下,这款"中国芯"传感器正加速重构车载感知市场格局,为智能汽车产业链自主可控提供关键支点。
意法半导体(ST)推出的IIS2DULPX工业级三轴MEMS加速度计,凭借其边缘智能、超低功耗与宽温域特性,正在成为工业自动化与资产监测领域的核心组件。本文将从技术优势、竞品对比、应用场景及国产替代潜力等维度,解析其如何突破传统传感器瓶颈,推动工业智能化升级。
(都灵,4月24日)全球半导体行业标杆企业意法半导体(STMicroelectronics,NYSE:STM)今日发布2025财年第一季度财报,数据显示这家欧洲芯片巨头正经历周期下行带来的严峻考验。在汽车电子和工业自动化两大核心市场需求持续萎靡的背景下,公司多项财务指标出现断崖式下跌,引发资本市场对半导体行业复苏节奏的重新评估。
全球电子代工龙头广达电脑(2382.TW)在成立37周年庆典上释放重磅产业信号。董事长林百里向《经济日报》披露,企业已锁定美系四大云服务商(CSP)今明两年持续增长订单,并宣布启动"自主型研发"战略转型,剑指AI服务器千亿级市场制高点。