16位分辨率仿真改善视频显示中的LED亮度控制

发布时间:2010-11-9 阅读量:1150 来源: 发布人:

视频显示系统使用MAX6975 PWM LED驱动器时,需要更高分辨率的PWM方案为8位或10位视频信号提供gamma (视觉效应)校正、LED参数匹配和环境光调整。这篇应用笔记讨论了如何利用14位PWM分辨率的MAX6975仿真16位PWM分辨率,以支持视频应用。

类似文章发表在2010年5月的Power Systems Design Europe杂志。

引言

为了得到更好的功效和色彩一致性,LED亮度通常通过调节LED驱动器的PWM周期占空比控制。一个PWM周期可以划分成2的“控制位”次方(2CONTROL BITS)个时钟周期。消费类电子应用中,控制位分辨率通常是8位。8位PWM分辨率可对应提供256个不同的亮度电平,相应的PWM周期由256个时钟周期组成。如消费类电子产品中,典型的时钟频率是32kHz,则PWM周期为256/32kHz或8ms。因此,PWM刷新率大约是125Hz,由此得到的PWM分辨率和刷新率足以支持亮度调整,并可消除人眼能够觉察的闪烁。

为LED驱动器提供16位分辨率

对于要求同时达到16位PWM分辨率和2kHz刷新率的应用,设计将面临诸多挑战。16位分辨率要求一个PWM周期包含216 = 65,536个时钟周期。2kHz的PWM刷新率要求时钟频率为2000 × 65,536 = 131.072MHz。通过CMOS接口以这个速度发送数据,即使在合理的传输距离上,也会造成数据通信的不可靠。而实际应用中,LED驱动器的输出端口不可能提供如此高的开/关速度支持LED的加载和相关的连接。没有精确的开/关时序,也无法实现16位分辨率的优势。

作为一个折衷方案,利用一组PWM周期分辨率低于16位的信号仿真16位PWM周期。通过这种方式在每个PWM周期内减少一定数量的时钟,可以采用低时钟频率达到所要求的2kHz PWM速率。一旦PWM刷新率高于几百赫兹,人眼将无法区分其变化/闪烁,从而保持16位分辨率的视觉效果。

以摄像机为例,摄像机工作在(或接近于) 1/2000的快门速度。摄像机将以较低的分辨率抓拍帧画面,但这仍然比在抓拍黑屏时的低刷新率要好得多。虽然快门速度可以非常高,但摄像机仍然可以每秒抓拍60帧,多帧图像的平均效果非常接近16位分辨率的图像。

16位分辨率可以分为不同的MSB/LSB (最高/最低有效位)比值进行仿真,由此可以得到几个分辨率为MSB的PWM周期:2的“最高有效位”次方(2MSB)。周期数等于LSB的分辨率:2的LSB次方(2LSB)。还可以按照其它不同的分配形式得到PWM的仿真组,比较简单的方法是由LSB决定每组中的最后一个时钟周期的开/关状态;MSB决定其余的时钟周期。简而言之,所有组的由MSB决定的时钟周期开/关次数是相同的。

测试示例

利用2/2分割仿真4位分辨率,举例说明上述方案。图1显示了由4位分辨率实现的16点PWM波形模板。


图1. 传统的4位和16点PWM波形图

2/2分割仿真产生4组4点PWM周期。2个LSB用来选择哪一组的最后一个时钟周期应该处于导通状态;2个MSB用来决定其余3个时钟周期的开/关模板。图2显示了当2个MSB为0时,2个LSB在仿真PWM波形中的效果。


图2. 2/2分割4位仿真的LSB效果

图3显示了当2个LSB为0时,2个MSB在仿真PWM波形中的效果。


图3. 2/2分割4位仿真的MSB效果

这个方法可以配合MAX6975 LED驱动器的内置LVDS接口,仿真16位分辨率,采用14/2分割实现。16位视频帧将以4个14位视频帧显示,四个视频帧在每个时钟周期具有不同的开/关时间。以16位PWM码作为输入,通过简单的编码产生14位PWM码。编码器将14位MSB作为14位基础码,加上其它由2个LSB模板产生的位。图4显示了仿真编码器,第一个14位PWM码与MSB相同;第二个码是增加了这两个LSB的MSB;第三个码加上了前两个码的“或”操作;第四个码加上了“与”操作。


图4. 14/2分割的16位仿真编码器架构

这种仿真方案存在两个小的缺点。

首先,在最高亮度区是会损失一些PWM码。如图2所示,当MSB和LSB合成时,有些仿真PWM码处于完全导通,而MAX6975的原始设计无法支持这种完全导通操作。但是,人们通常注意不到这些代码的丢失,因为接近全亮状态的代码并不常见。即使用到这些代码,人的视觉对于高亮度背景下的轻微变化并不敏感。

另外,如需保持60帧/秒的刷新率,向MAX6975发送数据的速率需要提高4倍甚至更快。MAX6975的数据接口速度仍然足以支持多芯片串联链路,但须适当减少链路上的芯片数。时钟频率为32MHz时,同一链路能够挂接的MAX6975芯片数为:32,000,000/(14 × 24 × 60) = 1,587片,图像刷新速率为60帧/秒。如果四个仿真帧需要发送给每个视频帧,芯片数将减少到396片。 一个32 × 32或最高56 × 56象素的视频阵列仍然可以在一条串行链路上通过单个数据接口驱动所有芯片。

最后,与通用仿真方案相比,仍然存在一些小的差异值得注意。每个PWM帧通常作为子帧重复32次,用于控制MAX6975的全局亮度。因此,MAX6975的14/2、16位分辨率仿真也需要把4个PWM仿真帧的每一帧重复32次。

结论

本文介绍了一种尚未公开,但已经被多数LED视频显示厂商采纳的高分辨率仿真方案,并以MAX6975芯片为例给出了实施方案。

相关资讯
高可靠+低功耗:虹扬SOT23封装ESD二极管领跑车规级防护市场

随着汽车电子化、智能化加速,车载系统对ESD(静电放电)防护的要求日益严苛。虹扬电子推出的车规级ESD保护二极管AH05C325V0L,采用SOT23封装,符合AEC-Q101标准,专为CAN总线、车身控制单元(BCU)及电子控制单元(ECU)等场景设计。其核心特性包括80W浪涌吸收能力、5V反向工作电压、单向电流设计,以及低漏电流和高抗静电能力(±30kV接触放电),为敏感电子元件提供高效防护。

消费电子补贴效应凸显,中小尺寸驱动IC需求三连增

全球显示面板核心元器件市场呈现企稳态势。根据TrendForce最新研究报告显示,2023年第一季度面板驱动IC产品均价环比下降幅度收窄至1%-3%区间,第二季度虽仍存在价格下行压力,但降幅预计将控制在2个百分点以内。这标志着自2020年疫情引发的剧烈市场波动后,驱动IC价格曲线首次出现明显筑底信号。

成本直降40%!易飞扬硅光模块如何重构DCI市场格局?

在全球5G网络部署与边缘计算需求井喷的背景下,易飞扬创新推出基于O波段的100G QSFP28 DWDM光模块,直击城域网络升级痛点。该产品通过零色散传输架构与硅光集成技术,突破传统C波段方案在中短距场景下的性能瓶颈,以低于3.5W的功耗实现30km无补偿传输,同时兼容开放光网络架构。据行业测算,其部署成本较同类方案降低40%,为5G前传、分布式AI算力互联及绿色数据中心建设提供了高性价比选择,或将成为运营商边缘网络改造的关键技术引擎。

充电效率94.8% vs 国际竞品:国产IC技术路线图全解析

在全球能源转型与欧盟新电池法规(EU 2023/1542)的驱动下,旭化成微电子(AKM)于2025年2月正式量产AP4413系列充电控制IC,以52nA超低功耗、94.8%充电效率及多电压适配等核心技术,重新定义小型设备供电逻辑。该产品通过电容器预充电机制破解完全放电恢复难题,并凭借动态电压调节算法兼容光能、振动等微瓦级能源输入,显著优于TI、ADI等国际竞品。面对国产替代窗口期,AP4413依托BCD工艺与专利壁垒抢占先机,有望在智能家居、工业传感等千亿级市场替代传统一次性电池方案,成为环保供电赛道的标杆级解决方案。

新能源汽车与工业4.0双重驱动:全球电子分销巨头技术布局揭秘

作为全球电子元器件分销领域的领军者,贸泽电子始终以"技术赋能创新"为核心战略,通过构建覆盖1200余家原厂的供应链网络,为工业自动化、汽车电子、智慧农业等前沿领域提供关键技术支持。2025年第一季度,公司新增物料突破8,000项,其中多项产品体现了行业技术演进的三大方向: