发布时间:2010-11-10 阅读量:1324 来源: 我爱方案网 作者:
1引言
随着数字信号处理器(DSP)与可编程逻辑器件(CPLD)的发展与普及,电源的控制已经由模拟控制、A/D混合控制,进入到全数字控制阶段。传统的感应加热电源控制电路大多采取模拟控制的方式,因此难免存在触点多、焊点多、可靠性低的缺点,对一些元件的工艺性要求高,灵活性较差。数字系统在这些方面就显得很先进:首先是灵活,即修改参数很方便;其次是在保证程序可靠的前提下,运行比模拟系统可靠得多;最后,使用起来比较简洁、灵巧,无需太多的元器件。因此,采取集成度高、集成功能强大的数字控制器设计电源的控制系统,以适应不断提高的电源输出可编程控制,控制精度高等要求。
2主电路拓扑设计
在感应加热电源的应用中,淬火、焊管、焊接等工艺都要求高频率大功率的电源。功率MOSFET虽然可以实现高频工作,但其电压、电流容量等级低,大功率电源需采用串、并联技术,影响了电源运行的可靠性。绝缘栅双极晶体管(IGBT)比较容易实现电源大功率化,但在高频情况下,其开关损耗,尤其是IGBT关断时存在的尾部电流,会限制其工作频
率的进一步提高。
倍频式高频电源采用大功率自关断功率器件IGBT,通过在逆变桥的每个IGBT上分别再并联一个IGBT来实现,每组并联的IGBT轮流工作,使得负载频率为开关管工作频率的2倍,间接拓宽了IGBT的使用频率。开关管工作于零电流开关状态,消除了尾部电流引起的关断损耗,理论上可实现零开关损耗。基于以上原因,在此选用倍频方案设计电源,可以使电源的整体输出功率大幅提高。主电路拓扑如图1所示。
3控制系统设计
控制器采用的是TMS320LF2407A和MAXⅡ系列芯片EPM1270T144C5。图2示出基于DSP+CPLD的电源系统数字化控制框图。DSP中PID模块的输出作为PWM控制模块的输入信号,控制两相占空比可调的PWM信号的脉宽;CPLD的锁相环跟踪谐振频率,结合DSP输出的移相角度,在PWM模块生成PWM脉冲触发信号;最后经脉冲分配模块实现分时鄄移相控制策略。
3.1基于CPLD的软件设计
控制系统工作过程如下:由电流检测电路检测负载槽路电流,经整流滤波后波形变换成方波信号,由谐振判别环节判断是否处于谐振状态。若是,则启动数字锁相环(DPLL)。采用全新的控制与方案实现DPLL,即鉴相器采用双D触发器鉴相器,其输出值代表相位误差;环路滤波器采用数字比例积分的方法实现;用数字控制振荡器(DCO)代替压控振荡器。DPLL的输出信号跟踪负载谐振频率,在PWM控制模块直接生成两组互补的PWM脉冲信号,作为逆变桥后桥臂VTbx和VTdx(x=1,2)的基本触发脉冲。同时,为了防止同一个桥臂的上下管直通,避免电压短路损坏开关器件,通常采用在两个开关管间设置死区的方法来解决,即等一个桥臂的开关管关断后方可开通另一桥臂的开关管,遵循先关断后开通的原则。
图3a为同一桥臂上下功管带死区的驱动脉冲。p是锁相环锁相锁频的负载谐振电流信号,clk是25 MHz的晶振频率。图3b为VTax和VTdx这两组开关管的驱动脉冲。由图可知后桥臂的驱动信号PWMd完全跟踪负载电流方波脉冲的上升沿,这样就实现对系统频率的跟踪控制。采取时间分割控制的目的在于提高系统的工作频率,CPLD中的脉冲分配模块实现对驱动脉冲的分时功能,图3c为驱动脉冲PWMd的分时功能仿真波形。由图可知,每个IGBT上的驱动频率为系统频率的1/2,即可利用两个IGBT的分时轮流工作提高了系统的工作频率。
3.2基于DSP的软件设计
图4示出增量式PI算法程序流程图。
为了得到稳定的输出功率,必须时刻跟踪负载电信号的变化,通过采样负载电压电流信号控制驱动脉冲占空比,以达到功率调节的目的。功率控制程序通过将从A/D转换结果寄存器中所读取的功率设定量与检测到的反馈量相比较,其差值通过数字PI控制算法进行处理,从而得到需要调整的相位角度φ的值。PI调节结果经SPI口输入到CPLD的PWM控制模块。
4实验
4.1实验参数及器件选取
倍频感应加热电源主要设计参数:输入电源为380 V/50 Hz三相交流电源,额定输出功率100 kW,逆变工作频率f=150 kHz,匹配变压器变比为10∶1。根据功率要求,按整流输出电压为500 V计算,则输出电流为200 A。考虑到安全裕量,选取整流二极管模块DF200AA120-160。折算到次级的负载电阻为0.25赘,取品质因数Q=10,则由Q=ωL/R,ω=2πf,f=150 kHz,可得次级电感L=2.65滋H,电容C=0.425μF。逆变器开关器件选择为IVT=300~400 A,UVD=1 075 V。逆变器选1.2 kV/400 A的FF400R12KS4型IGBT模块作为功率开关器件。IGBT驱动电路选取专用驱动功率IGBT/MOSFET的集成芯片IXDD430,可在较高的频率下工作,提供高达30 A的峰值输出电流。
4.2实验波形
图4a示出脉冲分配模块的输入波形与输出波形;图4b示出同桥臂上下开关管的死区驱动波形。
5结论
倍频感应加热电源数字化控制系统充分利用了DSP和CPLD的高速运算能力和丰富的片内外资源,能实时、自动地跟踪负载谐振频率。该控制方法具有抗干扰能力强,处理灵活,开关损耗小的优点,在工业控制中具有广阔的应用前景。
全球半导体巨头AMD于当地时间3月31日宣布完成对数据中心解决方案供应商ZT Systems的收购。这项总价值高达49亿美元(含或有付款)的交易,标志着AMD在AI基础设施领域的重大战略突破,或将重塑全球超大规模计算市场的竞争格局。
东芝电子元件及存储装置株式会社今日宣布,推出全球首款通过CXPI(时钟扩展外设接口)协议认证的车规级收发整合芯片TB9032FNG。这款革命性产品针对新能源汽车激增的线束痛点,通过物理层协议整合与智能多节点管理技术,可实现车身子系统通信线束减少30%以上,为车企提供符合AEC-Q100 Grade1标准的轻量化解决方案。在特斯拉Model 3等车型线束总长突破5000米的行业背景下,该芯片的5μA超低待机电流与双模节点切换能力,标志着车载通信网络向"线束瘦身"时代迈进关键一步。
全球农业智能化进程再添新利器。日本电子元件巨头村田制作所近日宣布,其专为设施农业研发的创新型CO2传感器IMG-CA0012-12已进入量产阶段。这款集成化检测装置通过独创的双波长补偿技术,成功突破传统气体传感器定期校准的技术瓶颈,为现代温室管理提供全天候精准监测解决方案。
2025年,随着生成式AI大模型对算力的需求呈指数级增长,高带宽内存(HBM)技术进入新一轮技术革命周期。作为AI服务器的“血液”,HBM4的研发与量产成为全球半导体产业的核心战场。SK海力士率先亮剑,于3月向客户交付12层HBM4样品,实测良率突破70%;三星则加速推进4nm逻辑芯片制程的HBM4试产,计划下半年量产;美光虽进度稍缓,却以“跳过HBM3直攻HBM3E”的策略蓄力反扑。与此同时,台积电与SK海力士的深度联盟,以及混合键合技术的突破性应用,正在重塑HBM产业链格局。这场技术角逐的背后,是英伟达Rubin GPU等AI芯片对HBM4高达2TB/s带宽的迫切需求,而全球HBM市场规模预计在2025年突破百亿美元,年增长率达40%。从封装技术革新到供应链话语权争夺,HBM4的竞争已不仅是性能之战,更是定义下一代计算生态的生死博弈。
全球半导体行业迎来重量级技术合作。意法半导体(STMicroelectronics,纽交所代码:STM)与国内氮化镓龙头企业英诺赛科(港交所代码:02577.HK)近日宣布签署战略协议,双方将在氮化镓(GaN)技术开发与晶圆制造领域深度协同,共同推动第三代半导体技术的规模化应用。