倍频式感应加热电源控制系统的研究

发布时间:2010-11-10 阅读量:1344 来源: 我爱方案网 作者:

1引言

随着数字信号处理器(DSP)与可编程逻辑器件(CPLD)的发展与普及,电源的控制已经由模拟控制、A/D混合控制,进入到全数字控制阶段。传统的感应加热电源控制电路大多采取模拟控制的方式,因此难免存在触点多、焊点多、可靠性低的缺点,对一些元件的工艺性要求高,灵活性较差。数字系统在这些方面就显得很先进:首先是灵活,即修改参数很方便;其次是在保证程序可靠的前提下,运行比模拟系统可靠得多;最后,使用起来比较简洁、灵巧,无需太多的元器件。因此,采取集成度高、集成功能强大的数字控制器设计电源的控制系统,以适应不断提高的电源输出可编程控制,控制精度高等要求。

2主电路拓扑设计

在感应加热电源的应用中,淬火、焊管、焊接等工艺都要求高频率大功率的电源。功率MOSFET虽然可以实现高频工作,但其电压、电流容量等级低,大功率电源需采用串、并联技术,影响了电源运行的可靠性。绝缘栅双极晶体管(IGBT)比较容易实现电源大功率化,但在高频情况下,其开关损耗,尤其是IGBT关断时存在的尾部电流,会限制其工作频

率的进一步提高。

倍频式高频电源采用大功率自关断功率器件IGBT,通过在逆变桥的每个IGBT上分别再并联一个IGBT来实现,每组并联的IGBT轮流工作,使得负载频率为开关管工作频率的2倍,间接拓宽了IGBT的使用频率。开关管工作于零电流开关状态,消除了尾部电流引起的关断损耗,理论上可实现零开关损耗。基于以上原因,在此选用倍频方案设计电源,可以使电源的整体输出功率大幅提高。主电路拓扑如图1所示。

3控制系统设计

控制器采用的是TMS320LF2407AMAXⅡ系列芯片EPM1270T144C5。图2示出基于DSP+CPLD的电源系统数字化控制框图。DSPPID模块的输出作为PWM控制模块的输入信号,控制两相占空比可调的PWM信号的脉宽;CPLD的锁相环跟踪谐振频率,结合DSP输出的移相角度,在PWM模块生成PWM脉冲触发信号;最后经脉冲分配模块实现分时鄄移相控制策略。

3.1基于CPLD的软件设计

控制系统工作过程如下:由电流检测电路检测负载槽路电流,经整流滤波后波形变换成方波信号,由谐振判别环节判断是否处于谐振状态。若是,则启动数字锁相环(DPLL)。采用全新的控制与方案实现DPLL,即鉴相器采用双D触发器鉴相器,其输出值代表相位误差;环路滤波器采用数字比例积分的方法实现;用数字控制振荡器(DCO)代替压控振荡器。DPLL的输出信号跟踪负载谐振频率,在PWM控制模块直接生成两组互补的PWM脉冲信号,作为逆变桥后桥臂VTbxVTdxx=12)的基本触发脉冲。同时,为了防止同一个桥臂的上下管直通,避免电压短路损坏开关器件,通常采用在两个开关管间设置死区的方法来解决,即等一个桥臂的开关管关断后方可开通另一桥臂的开关管,遵循先关断后开通的原则。

3a为同一桥臂上下功管带死区的驱动脉冲。p是锁相环锁相锁频的负载谐振电流信号,clk25 MHz的晶振频率。图3bVTaxVTdx这两组开关管的驱动脉冲。由图可知后桥臂的驱动信号PWMd完全跟踪负载电流方波脉冲的上升沿,这样就实现对系统频率的跟踪控制。采取时间分割控制的目的在于提高系统的工作频率,CPLD中的脉冲分配模块实现对驱动脉冲的分时功能,图3c为驱动脉冲PWMd的分时功能仿真波形。由图可知,每个IGBT上的驱动频率为系统频率的1/2,即可利用两个IGBT的分时轮流工作提高了系统的工作频率。

3.2基于DSP的软件设计

4示出增量式PI算法程序流程图。

为了得到稳定的输出功率,必须时刻跟踪负载电信号的变化,通过采样负载电压电流信号控制驱动脉冲占空比,以达到功率调节的目的。功率控制程序通过将从A/D转换结果寄存器中所读取的功率设定量与检测到的反馈量相比较,其差值通过数字PI控制算法进行处理,从而得到需要调整的相位角度φ的值。PI调节结果经SPI口输入到CPLDPWM控制模块。

4实验

4.1实验参数及器件选取

倍频感应加热电源主要设计参数:输入电源为380 V/50 Hz三相交流电源,额定输出功率100 kW,逆变工作频率f=150 kHz,匹配变压器变比为101。根据功率要求,按整流输出电压为500 V计算,则输出电流为200 A。考虑到安全裕量,选取整流二极管模块DF200AA120-160。折算到次级的负载电阻为0.25赘,取品质因数Q=10,则由Q=ωL/R,ω=2πff=150 kHz,可得次级电感L=2.65H,电容C=0.425μF。逆变器开关器件选择为IVT=300400 AUVD=1 075 V。逆变器选1.2 kV/400 AFF400R12KS4IGBT模块作为功率开关器件。IGBT驱动电路选取专用驱动功率IGBT/MOSFET的集成芯片IXDD430,可在较高的频率下工作,提供高达30 A的峰值输出电流。

4.2实验波形

4a示出脉冲分配模块的输入波形与输出波形;图4b示出同桥臂上下开关管的死区驱动波形。

5结论

倍频感应加热电源数字化控制系统充分利用了DSPCPLD的高速运算能力和丰富的片内外资源,能实时、自动地跟踪负载谐振频率。该控制方法具有抗干扰能力强,处理灵活,开关损耗小的优点,在工业控制中具有广阔的应用前景。

相关资讯
国产感烟探测器MCU破局:BA45F25343/53/63如何实现精度与成本双赢?

在消防安全需求升级与物联网技术融合的背景下,Holtek(盛群半导体)推出BA45F25343/53/63系列MCU,以双通道感烟AFE(模拟前端)为核心,结合高度集成的电源管理与智能算法,实现感烟探测器在精度、成本、可靠性三大维度的突破性提升。该系列通过内置双通道LED驱动、5V/9V多电压输出及失效报警功能,不仅解决了传统方案外围电路复杂、误报率高(行业平均>2%)的痛点,更以国产替代能力打破海外厂商(如ADI、Microchip)在高端消防芯片市场的垄断,成为智能消防终端、工业安全监测等场景的行业标杆。随着智慧城市与安规政策驱动,BA45F系列有望在百亿级消防物联网市场中占据核心地位。

能效与体积的双重革命:解码Microchip新一代电源模块的六大核心优势

在边缘计算与工业自动化高速发展的当下,电源管理技术正面临高密度集成与能耗优化的双重挑战。Microchip推出的MCPF1412高效全集成12A电源模块,以行业领先的5.8mm³超小封装、95%以上能效转换率及智能化数字接口,直击设备小型化与能源损耗的核心痛点。本文从技术解析、性能突围、国产替代路径及市场前景多维度切入,深度剖析该模块如何通过创新的LDA封装与PMBus®兼容设计,在工业控制、数据中心及新能源领域重构电源管理标准,为国产替代与全球竞争提供关键技术启示。

16nm工艺硬核突围 易灵思车载FPGA技术图谱深度解析

在第二十一届上海国际车展的智能驾驶技术专区,易灵思(展位2BC104)首次公开展示其钛金系列FPGA完整技术生态,两款基于16nm FinFET工艺的旗舰产品Ti60/Ti180,配合全栈式开发平台,构建起覆盖智能座舱、自动驾驶域控制器、车载传感三大核心场景的解决方案。

颠覆性技术突破!英特尔18A工艺斩获四大客户,台积电2nm制程迎来劲敌

全球半导体制造格局迎来关键变量。根据产业链最新消息,英特尔的Intel 18A制程节点已获得英伟达、博通、IBM等多家行业巨头的代工订单,首批验证芯片反馈积极。这意味着在台积电主导的先进制程领域,美国本土终于出现具备竞争力的替代方案。

“舱驾一体”时代来临:深度解析天玑C-X1如何挑战高通霸主地位

在2025年上海国际车展上,联发科技(MediaTek)以天玑汽车旗舰座舱平台C-X1与联接平台MT2739的发布,正式吹响了“AI定义座舱”的号角。作为全球首款基于3nm制程的车规级芯片,C-X1凭借双AI引擎架构、NVIDIA Blackwell GPU集成及400TOPS的端侧AI算力,不仅突破了传统车载芯片的算力天花板,更通过云端-端侧一致性开发生态,实现了低延迟语音交互、实时旅程规划等生成式AI功能的规模化落地。而MT2739作为5G-Advanced技术的标杆性产品,率先支持3GPP R18协议及卫星通信技术,解决了复杂场景下的网络稳定性难题。这两大平台的协同,标志着MediaTek在智能汽车领域完成了从芯片性能到生态整合的全链条布局,直面高通8155等竞品的市场优势,并加速国产替代进程。随着智能座舱渗透率预计在2025年突破60%,MediaTek正以技术革新重塑行业格局,推动中国汽车芯片从“跟随”迈向“引领”的跨越式发展。