采用MAX16834设计buck-boost LED驱动器

发布时间:2010-11-10 阅读量:1287 来源: 发布人:

本参考设计用于buck-boost LED驱动器。设计采用电流模式高亮度LED驱动器MAX16834,利用MAX16834评估(EV)板实现此设计方案。本应用笔记提供设计说明、原理图、材料清单(BOM)以及性能数据。

该参考设计中,buck-boost转换器(以输入电压为参考)从7V至18V直流电源产生驱动4个白光LED (WLED)的350mA电流,设计采用MAX16834电流模式高亮度(HB) LED驱动器。

LED驱动器规范

输入电压:7V至18V
输入电压纹波:100mVP-P
LED电流:350mA
LED电流纹波:5% (最大值)
LED正向电压:3.5V (350mA时)
LED数量:4只(最大值)
输出过压保护:17.2V

输入端

VIN、PGND:电源输入
PWMDIM、SGND:PWM调光输入
 
输出端

LED+:连接LED阳极至LED+
LED-:连接LED阴极至LED-


详细电路(PDF, 60.64kB)
图1. MAX16834EVKIT用于实现参考设计的功能


图2. LED驱动器原理图

元件列表* (材料清单BOM)

*元件标识与MAX16834评估板一致。

详细说明

将boost转换器输出负端连接到输入电源正端,构成buck-boost转换器(以输入电压为参考)。

在此设计一款buck-boost转换器(以输入电压为参考),从7V至18V直流电源产生350mA电流,驱动4个白光LED (WLED) (每个WLED在350mA时的正向压降为3.5V)。MAX16834 HB LED驱动器集成了峰值电流模式控制器,工作于CCM (连续导通模式),开关频率为495kHz。开关频率通过R15电阻(11kΩ)设置。

输入、输出电压变化时,MAX16834控制电感的峰值电流,保证LED的电流为350mA。检测LED回路的电流检测电阻两端的电压,然后将其在内部放大9.9倍,这样可以减小检测电阻的阻值,从而提高效率。经过放大的电压与R16和R17设定的基准电压进行比较,其差值由一个GM = 500µS的跨导放大器进行放大,输出信号在COMP引脚产生控制电压,此电压设置电流环路的基准,这样,电感电流检测电阻R9两端的电压峰值最终成为此控制电压。

转换器设计

转换器设计参数如下:
输入电压范围:7V至18V
输入电压纹波:100mVP-P
LED正向最大电压:14V (即4 x 3.5V)
LED电流:350mA
LED电流纹波:5% (最大值)
开关频率:455kHz

按照式1计算N2的最大占空比:

其中,VLEDMAX是LED最大电压,VINMIN是最低输入电压,VD是二极管压降,VDS是FET开关导通时的平均压降。

本应用中,DMAX为0.69。

电感(L1)选择

选择电感,需要知道其电感量和峰值电流。峰值电感电流可用式2计算:

其中,ILAVG为平均电感电流,ΔIL为电感电流纹波,表示为平均电感电流的百分比:

允许电流纹波ΔIL为30%,代入已知参数,可以得到:

最小电感量可由式5计算:

其中,fSW为开关频率。考虑到20%的容差,可得LMIN = 17µH,此处选择22µH电感。

开关检流电阻(R9)

正常工作时,开关检流电阻两端的电压最大值不应高于250mV,如果检流电阻的电压达到300mV (典型值),转换器将关断。R9上的电压决定了开关周期中导通脉冲的宽度,芯片内部提供了前沿屏蔽电路,可防止开关MOSFET提前关断。R9的计算如式6所示:

计算得到:R9 = 0.133Ω,这里R9选择0.15Ω。

斜率补偿电容(C13)

众所周知,在峰值电流模式控制中,CCM boost转换器的占空比超过50%时环路将出现不稳定,需要引入适当的斜率补偿,以消除由谐波分量引起的不稳定性。MAX16834具有内部斜坡发生器,用于斜率补偿。在每个开关周期开始时,斜坡电压复位,然后按外部电容C13设定的速率上升,C13由内部的100µA电流源进行充电,斜坡电压与R9两端的电压内部叠加。C13的计算如式7所示:

其中,VSLOPE为:

从式7和式8可以得到:C13 = 1.57nF,实际选取1.5nF电容。

LED检流电阻(R5)

利用式9计算R5:

在此应用中,取VREFI = 1.94V,得到:R5 = 0.56Ω。

滤波电容

输出电容COUT (C7与C8的并联电容)按式10计算:

其中,ΔVLED为输出电压纹波的最大峰峰值,它取决于最大电流纹波和此电流下LED的动态阻抗。为延长LED使用寿命并保证其色度,LED上的纹波电流应小于其平均电流的5%。本应用中,计算得到COUT为3µF,故电容C7、C8均选用2.2µF/50V。

由式11计算输入电容(C1、C2的并联电容):

其中,ΔVIN为输入电压纹波的峰峰值。

对于100mV的ΔVIN,CIN为1.9µF,所以选择C1为2.2µF/25V,C2为1.1µF/25V。

反馈补偿

Buck-boost转换器的传递函数在右半平面存在一个零点,可用式12计算:

本应用中,fRHPZ在37.8kHz处,为了提供充分的相位裕量,保持环路稳定,在-20dB/十倍频程时,整个环路增益应在RHP零点频率的1/5之前达到0dB,由此可得截止频率fC为7.56kHz。输出电容和负载等效输出阻抗会产生一个极点:

其中,RO为负载等效阻抗,由下式确定:

从式14可得fP1 = 4.7kHz。

接下来选择补偿元件R10和C12,它们需要在极点频率fP1处产生一个零点,并调整fP1处的环路增益,使之在fC达到0dB。

利用式15计算R10:

从式15可得R10 = 341Ω,此处R10选择301Ω电阻;GM是内部跨导放大器的增益。

相应地,C12可以计算如下:

从式16可得C12 = 0.11µF,此处选用0.1µF电容。

数字PWM调光

MAX16834内部有一个用于PWM调光的MOSFET驱动器,它可以接受1.5V至5V的逻辑高电平PWM信号,信号频率从直流到20kHz,通过改变PWM信号的占空比调节LED亮度。

NDRV驱动器和跨导放大器输出由PWM信号控制,PWM信号为高时,NDRV使能,跨导放大器的输出端连接到COMP引脚;信号为低时,NDRV被禁止,跨导放大器的输出端断开,COMP端连接到PWM比较器反相输入端,该端为CMOS输入,可忽略其从补偿电容C12吸收的漏电流,故C12上电荷将保持,直到PWM变高。一旦信号变为高电平,NDRV将使能,放大器输出又连接到COMP端,从而快速建立稳定的工作状态。

LED开路保护

如果空载或发生LED开路故障,boost转换器将会产生很高的输出电压,该转换器可在发生这种高电压时关闭,电压门限通过R11和R12设定。R11和R12的分压点接到IC的OVP引脚,当该引脚电压达到1.435V (典型值)时,转换器将关闭。本设计中,R11和R12设定的LED开路保护点为输出电压达到17.2V。

用MAX16834评估板实现buck-boost转换器

MAX16834评估板上装配了boost转换器,可以通过增减下列元件,将其配置为buck-boost转换器:
移除电阻R4、R8。
把电阻R3换成0Ω。
按照BOM说明安装元件。

电路波形和性能数据


图3. N2栅极驱动电压


图4. N2漏极电压


图5. N2开关电流波形


图6. LED电压


图7. PWM调光占空比为50%时的LED电流波形


图8. PWM调光占空比为90%时的LED电流波形


图9. PWM调光占空比为10%时的LED电流波形

上电顺序

将4只串联的WLED的阳极连接到LED+焊盘,阴极连接到LED-焊盘。
输入电源连接到VIN和PGND焊盘之间。
将逻辑高电平为1.5V至5V的PWM信号(频率范围为100Hz至200kHz)连接到PWMDIM和SGND焊盘之间。
改变PWM信号占空比检验LED的亮度变化。

相关资讯
全球组织瘦身:英特尔启动新一轮裁员应对业绩挑战与战略转型

英特尔公司新一轮全球裁员行动正式启动。根据内部信息,其核心制造部门——英特尔代工厂(Intel Foundry)的“初步”裁员已于7月中旬展开,预计在本月底完成首阶段人员调整。公司高层在致工厂员工的备忘录中强调,该决策旨在“打造一个更精简、更敏捷、以工程及技术能力驱动的制造体系”,此举对于“赢得客户信任”及提升市场竞争力至关重要。

全球DRAM产业加速转向DDR5,美光正式启动DDR4停产计划

全球三大DRAM巨头——三星电子、SK海力士和美光科技——已正式拉开DDR4内存大规模停产的序幕,标志着主流内存技术加速进入更新换代期。继三星率先宣布其DDR4产品线将在2025年底结束生命周期后,美光也正式向核心客户发出通知,确认其DDR4/LPDDR4产品在未来2-3个季度内将逐步停止出货。

三星试产115英寸RGB MicroLED电视,高端显示技术再升级

据行业消息,三星电子近期在其越南工厂启动115英寸RGB MicroLED电视的试生产。电视业务负责人Yong Seok-woo亲赴产线视察流程,标志着该技术正式进入量产准备阶段。尽管产品命名包含"MicroLED",但技术本质为采用RGB三色MiniLED背光的液晶电视(LCD),通过创新背光方案实现画质跃升。

AMD与三星深化AI芯片合作,HBM3E加速量产推动AI服务器升级

AMD在AI Advancing 2025大会上正式宣布,其新一代MI350系列AI加速器将搭载三星电子与美光的12层堆叠HBM3E高带宽内存芯片。这是AMD首次公开确认三星的HBM3E供货身份,标志着双方战略合作进入新阶段。MI350X与MI355X两款芯片采用相同架构设计,仅在散热方案上存在差异,均配备288GB HBM3E内存,较上一代MI300X的192GB提升50%,比MI325X提升12.5%。

舜宇光学5月出货数据解析:车载业务强势增长,高端化战略重塑手机业务格局

全球光学龙头舜宇光学科技(02382.HK)近期披露2025年5月出货量数据,呈现“车载领跑、手机承压、新兴品类崛起”的鲜明态势。在汽车智能化浪潮与消费电子结构性升级的双重驱动下,公司业务版图正经历深度调整。