LED背光SEPIC驱动器

发布时间:2010-11-10 阅读量:1061 来源: 发布人:

本参考设计介绍了一个SEPIC/线性LED显示器背光驱动器,可驱动8路并联的WLED (白光LED)串,每串可连接8只LED,每串电流可达70mA,调光比为4000:1。输入电压范围为16V至36V,可承受50V瞬态电压。该设计包含一个SEPIC开关电源,具有自适应反馈和线性吸电流调节功能,用于支持较高的调光比。MAX16809是具有这一功能的16通道LED驱动器。


概述

该参考设计用于12英寸TFT显示器的LED背光驱动。输入电气要求和输出特性如下:
VIN (电源):
16V (1092mA)至36V (476mA);可承受50V瞬态电压
VBIAS
3.3V (50mA)
PWMIN
250Hz脉冲串;1µs (最小值)脉冲;0mA时大于3.1V;10mA时小于0.3V
VLED配置:
8只LED (2.9V至3.75V)串联(31V,最大值);8串并联,每串电流可达70mA 


详细图片(PDF, 51.64kB)
图1. MAX16809驱动器电路板


详细图片(PDF, 14.83kB)
图2. 驱动器设计原理图

电路简述

该参考设计采用MAX16809作为SEPIC电源和16通道LED驱动器的主控制器。16个通道以每对为一组,驱动8路并联的LED串。SEPIC电源允许输入电压大于或小于输出电压,这种拓扑非常适合汽车环境下的LED应用,因为这种环境下输入、输出电压波动较大。SEPIC电源工作在200kHz频率,速率足以满足选择小尺寸功率元件的需求,而且,这样的开关频率也不会导致开关MOSFET过热。耦合电感L1由Coilcraft®生产,提供SEPIC电源所需的初级和次级电感。由于使用耦合电感结构,与采用两个分离电感的方案相比,该设计中的电感值可以减小一半。

PCB已更改为使用含铅的低ESR电解电容。当PWM信号关闭负载使其电流为零时,这些电容用来吸收电源的电感能量。LED串的输出电压可通过两个8引脚连接器提供:VLED+靠近连接器外侧,VLED-靠近连接器内侧。必要时可以使用所提供的输出滤波电容焊盘;本设计中没有安装这些电容。Q2-D2-R8电路为电流模式PWM控制器提供了斜率补偿。该电路跟随RTCT电压波动,向R7注入电流,从而产生斜坡电压,防止在占空比超过50%时(当输入电压较低时)导致控制器谐波振荡。

SEPIC反馈路径分两种模式:自适应和静止。自适应模式(当PWM信号为高时)下将产生“二极管或”输出,从而使最低驱动器电压(最大LED串联压降)被调整到大约700mV,为保证LED驱动器正常工作提供足够裕量。其它LED串具有较低的串联压降,所以这些驱动器具有更大裕量。自适应模式把由线性LED驱动器产生的功耗降至最低。该模式下,当LED的绝对正向导通电压不太严格时,LED之间正向导通电压的相对误差应控制在200mV以内。为改善散热,MAX16809必须与大面积覆铜层之间有良好的导热通道,可通过封装裸焊盘下方的过孔实现散热。该参考板中利用底层的地平面为IC散热,如果使用面积更大的多层地平面,散热效果会更好。

静止模式下(PWM信号为低),按照与传统电源类似的方式调整VLED,电压上升至在很短的脉冲内保证工作的电压值。因为电源磁场无法在很短的脉冲内快速建立足够的储能,所有能量必须由输出电容提供。静止模式必须保证这些电容能够充电达到足够的储能,在电感响应之前维持足够的能量。

齐纳二极管D10为电路提供过压保护,如果一串LED断开,自适应电压控制将尝试提高VLED以满足700mV的要求。D10将最高输出电压限制在35.5V。虽然该高压不会损坏电路,但LED驱动器的功耗可能导致MAX16809过热。芯片内部电路将关断驱动器,直到温度下降到适当值,这会导致LED闪烁。

通过R5 (511Ω)将LED驱动电流设置在35mA,如果将两个驱动器并联驱动一串LED,则每串的驱动电流可以达到70mA。

施密特反相触发器U2配置成振荡器,为MAX16809的SPI输入提供时钟。由于DIN接高电平,将向内部寄存器输入一串“1”,开启所有LED驱动器。U2还用于对PWM信号反相转换,以满足MAX16809的OE#输入要求。

Q3-D11-R16电路预先调整MAX16809 PWM控制器的输入电源。简单的线性稳压器可以将输入电压降至12V,适合IC的工作电压以及MOSFET的栅极驱动。LED驱动器输入(V+)需要外接3.3V电源(原PCB的替换方案)。LED驱动器的最大驱动电流为50mA。

性能测试和结果


详细图片(PDF, 34.14kB)
图3. VIN = 18V、VIN = 36V时的MOSFET电流和电压


详细图片(PDF, 34.23kB)
图4. 1µs脉冲和2ms脉冲VLED,VLED在静止模式和自适应模式下交替转换。


详细图片(PDF, 40.38kB)
图5. 1.5ms和3.5ms脉冲的LED驱动器电压、VLED电压和MOSFET电流,VLED进入自适应模式之前LED驱动器电压保持高电平。

温度测量

以下温度参数采用8个400Ω电阻作为负载测量得到:



上电流程

每路输出连接一串8只LED,LED串的正极连接至输出连接器外侧;LED串的负极连接至输出连接器的内侧。
将没有上电的3.3V电源连接到J5,务必确认极性正确。
将没有上电的18V至36V (2A额定电流)电源连接至系统输入,务必确认极性正确。
打开电源,上电顺序没有严格要求。
在J4提供250Hz脉冲波,脉冲摆幅为0V至3.3V,占空比为0.1%至100%。
检流电阻R3两端的大尺寸过孔提供低噪探头,可以连接一个接地线圈和单端示波器探头。

相关资讯
全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。

革新智能驾驶通信:移远车载蜂窝天线补偿器如何破解行业痛点?

在2025上海国际车展上,移远通信推出的全新车载蜂窝天线补偿器引发行业关注。该产品通过双向动态补偿、微秒级频段切换及混频电路集成等核心技术,解决了车载通信中长期存在的射频链路损耗难题,为智能网联汽车提供稳定高效的通信支持。本文将从技术优势、竞争分析、应用场景及市场前景等多维度解读这一创新方案。

全球DRAM市场变局:三星技术迭代与SK海力士堆叠方案的对决

在全球DRAM市场格局加速重构的背景下,三星电子近期宣布将跳过第八代1e nm工艺节点,转而集中资源开发基于垂直通道晶体管(VCT)架构的下一代DRAM技术。据内部路线图显示,三星计划在2027年前实现VCT DRAM量产,较原定计划提前一个世代。该技术通过三维堆叠晶体管结构,将存储单元面积缩减30%,并利用双晶圆混合键合工艺解决信号干扰问题,被视为突破传统平面工艺物理极限的核心方案。

京东方2025年一季度净利润飙升64% 显示业务领跑全球推动业绩新高

2025年4月28日,京东方科技集团股份有限公司(以下简称“京东方”)发布2025年第一季度财报,以多项核心经营指标的历史性突破,彰显其作为全球半导体显示龙头企业的强劲发展动能。报告期内,公司实现营业收入505.99亿元,同比增长10.27%,创下一季度收入新高;归属于上市公司股东的净利润达16.14亿元,同比大幅增长64.06%,扣非净利润13.52亿元,同比飙升126.56%。这一业绩表现得益于其“屏之物联”战略的深化落地,以及“1+4+N+生态链”业务架构下各板块的协同创新。