发布时间:2010-11-10 阅读量:929 来源: 我爱方案网 作者:
就低电压高电流电源应用而言,开关式电源门极驱动要求特别重要。由于几个 MOSFET 器件通常并联以满足特定设计的高电流规范要求,因此单一集成电路控制器与驱动器解决方案的方便性就不再是可行的选择。MOSFET 并联可降低漏极到源极的导通电阻,并减少传导损耗。但是,随着并联器件的增多,门极充电的要求也迅速提高。由于 MOSFET 的内部阻抗大大低于驱动级,因此与驱动并联组合相关的大多数功率损耗其形式都表现为控制器集成电路的散热。因此,许多单片解决方案的驱动级由于并联组合的关系都无法有效地驱动更高的门极充电。
为了解决该问题,业界近期提供了更多的高级 MOSFET 驱动器产品。许多新产品都包括大大高于单片解决方案所提供的驱动电流功能。驱动器集成电路放置得离 MOSFET 门越近,更高的驱动电流驱动并联 MOSFET 的效率就越高。除了驱动电流增大外,现在的许多高级 MOSFET 驱动器还采用先进的技术以精确控制两个开关之间的计时,就好像同步降压应用中所采用的那样。
使用带有独立的 PWM 控制器的外部 MOSFET 驱动器,这有助于电源设计人员获得必需的灵活性,能够满足上述低电压、高电流电源转换器对高性能门极驱动所提出的要求。由于现有的 PWM 控制器与驱动器品种丰富,因此采用上述方法所能实现的特性组合似乎无穷无尽。
随着输出电压接近低于 1V 电平,电源控制集成电路制造商推出了包括适当的内部低电压参考的产品,以适应新情况的要求。但是,如果某位设计人员希望既采用高性能驱动器,又使用包括的内部参考高于反馈电压的 PWM,那该怎么办呢?换言之,调节输出电压为 1V 的情况通常都需要 1V 或更低的参考电压,由 PWM 内部误差信号放大器的同相输入提供。
应用电路(见图 1)提出了一种备用方法,可反馈低于 PWM 参考电压的输出电压。正常情况下,输出电压高于误差信号放大器的参考,因此 VOUT 与接地之间简单的电阻分压器会将调节电压设置在 PWM 误差信号放大器的同相输入的水平上。但是,当 VOUT 低于误差信号放大器参考电压时,反馈电压必须分压,而不是下降。分压意味着必须从另一个调节电压源添加一些额外的电压至反馈电压。
![]() |
图 1:低电压同步降压反馈解决方案 |
UCC3803(同样见图 1)在集成电路的引脚八上提供 4V 的内部电压参考。此外,在 PWM 误差信号放大器的同相输入上的内部电压为 VREF/2,或 2V。通过 R1 反馈 100% 的 VOUT,再通过 R2 反馈一部分 VREF,可在引脚二上对 UCC3803 反馈节点应用叠加的原理:
就图 1 显示的应用电路而言,UCC3803 配置为电压模式操作,因此可适当选择第三类补偿方案。由于 R1 是控制环路补偿的一部分,因此必须先计算出该值,然后根据以下方程式选出 R2 的值:
如果应用中 PWM 控制器不向集成电路外部提供参考电压,我们仍可应用上述技术,但还需要从其它调节源添加图 1 中 VREF 所提供的额外电压。
是选择采用带有集成驱动级的单一集成电路 PWM 控制器,还是考虑采用带有与 PWM 控制器分开的外部驱动器集成电路的双芯片解决方案,有时很难说清楚。双芯片解决方案可实现性能增强的优势,但也必须进行认真比较,因为它相对造成成本增加,而且失去了单集成电路方法的简单性。不过,当低电压、高电流以及高频电源转换的最佳性能绝对必需时,我们选择哪种 PWM 控制器也就不必受限于误差信号放大器参考电压了。
参考文献
UCC27221/2《高效预测性同步降压驱动器》数据表,TI 资料号 SLUS486A UCC3800/1/2/3/4/5《低功率 BiCMOS 电流模式 PWM》数据表,TI 资料号 SLUS270A 《使用 UCC27222 采用预测性门极驱动技术的 12V 至 1.8V、20A 高效同步降压转换器》,作者:Steve Mappus,随 UCC27222EVM 提供的用户指南,TI 资料号 SLUU140
关于作者
Steve Mappus 是 TI 新罕布什尔州曼彻斯特分部的资深电源应用专家,负责电源控制集成电路的市场营销与新产品开发的支持工作。Steve Mappus在电源设计方面拥有超过 12 年的经验,并获得马萨诸塞州斯普林菲尔德市的新英格兰西部学院的 BSEE 学位。他的邮件地址为:steven_mappus@ti.com。
Teledyne e2v最新推出的三款航天级工业CMOS传感器(Ruby 1.3M USVEmerald Gen2 12M USVEmerald 67M USV),分辨率覆盖130万至6700万像素,均通过Delta空间认证及辐射测试。这些传感器在法国格勒诺布尔和西班牙塞维利亚设计制造,专为极端太空环境优化,适用于地球观测卫星恒星敏感器宇航服摄像机及深空探测设备。产品提供U1(类欧空局ESCC9020标准)和U3(NASA Class 3)两种航天级筛选流程,并附辐射测试报告与批次认证。
英特尔下一代桌面处理器Nova Lake-S(代号)的完整规格于2025年6月密集曝光,其颠覆性的核心设计接口变革及平台升级,标志着x86桌面平台进入超多核时代。本文将结合最新泄露的SKU清单与技术细节,系统性解析该架构的革新意义。
根据最新行业信息及供应链消息,高通2024年芯片战略路线图逐渐清晰。除下半年旗舰平台Snapdragon 8 Gen 2 Elite(代号SM8850)外,公司还将布局定位精准的次旗舰产品线——Snapdragon 8s Gen 5(代号SM8845),通过架构复用策略实现性能与成本的动态平衡,进一步完善中高端安卓终端市场布局。
据供应链最新消息,三星电子原定于2025年下半年启动的430层堆叠V10 NAND闪存大规模量产计划面临延期。行业内部评估显示,该项目预计推迟至2026年上半年方能落地,技术实现难度市场需求波动及设备投资压力构成核心制约因素。
Littelfuse推出的KSC PF系列密封轻触开关专为严苛环境设计,采用表面贴装技术(SMT),尺寸紧凑(6.2×6.2×5.2 mm),具备IP67级防护(完全防尘、1米水深浸泡30分钟不进水),并通过延伸式防护框设计优化灌封工艺。灌封是将PCB元件封装在树脂中以抵御腐蚀、振动和热冲击的关键工艺。传统开关因扁平防护框限制树脂覆盖深度,而KSC PF的延伸结构允许更深的灌封层,提升对PCB整体元件的保护,同时支持鸥翼式或J形弯脚端子选项,适用于工业自动化、医疗设备、新能源汽车等高可靠性领域。