发布时间:2010-12-14 阅读量:1189 来源: 发布人:
【中心议题】
【解决方案】
OLED具有自发光、低功耗、响应速度快、视角宽、分辨力高、宽温度特性、高亮度、高对比度、抗振性能好、耗等性能,并且抗弯曲能力强,非常适合作柔性显示器件。
OLED适用于对显示效果要求高的便携产品及军事等特殊领域。
技术原理
OLED是基于有机材料的一种电流型半导体发光器件,由铟锡氧化物半导体薄膜(Indium Tin Oxides,ITO)透明电极、空穴传输层、有机发光层、电子传输层、电极层组成。原理是用ITO和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子使发光分子激发,经过辐射发出可见光。OLED用红、蓝、绿像素并置法、转换法(Color Conversion Method,CCM)、白光加彩色滤光片法、微共振腔调色法和多层堆叠法来实现彩色化。
OLED显示屏驱动方式依驱动方式可分为被动式(Passive Matrix OLED,PMOLED)与主动式(Active MatrixOLED,AMOLED)。PMOLED是属于电流驱动,结构简单,驱动电流决定灰阶,应用在小尺寸产品上。AMOLED在每一个OLED单元(即像素)后面都有一组薄膜晶体管和电容器,形成一个薄膜场效应晶体管(Thin Film Transistor,TFT)驱动网络,每一个像素都可以在控制芯片的操作下驱动TFT的激发像素点,这种方式能获得极速的响应时间而且省电,显示效果好,适合大屏幕全彩色OLED的需要。OLED按所使用的载流子传输层和发光层有机薄膜材料的不同,分为两种不同的技术类型:一种是以机染料和颜料为发光材料的小分子聚合物OLED,另一种是以共轭高分子为发光材料的PLED(高分子聚合物OLED)。目前研究表明,PLED十分适合用于柔性显示,采用Int-Jet(喷墨)印刷,涂布有机材料物质,不需薄膜制程、真空装置,元件构成只有2层,投资成本低,但是其喷墨技术的墨滴均一化及RGB三基色定位精度不易控制,影响全彩化产品进程,寿命与产品良率也有待提高。
研发进展
1987年由柯达公司科学家邓青云博士发表以真空蒸镀法制成多层式结构的OLED器件后,其低工作电压与高亮度的商业应用潜力吸引了全世界的目光,美国、日本、韩国等国的大公司纷纷投资加入OLED的研究行列。
1989年剑桥大学Cavendish实验室发现了在某些聚合物中通过电流会激发出光,这就是高分子OLED的工作原理。1992年,剑桥显示技术公司(Cambridge Display Technology,CDT)成立,开始研究这项发现,并获得了基础知识产权。CDT在PLED研究中取得的另一个重要的革新是采用喷墨印刷(Ink-Jet Print)的方式,将发射出光的聚合物印刷在玻璃或塑料上来制成PLED显示器。这一革新提供了一种低成本的彩色显示器制作方法,不但为PLED的产业化提供了可能,还使它可以以柔软的塑料作为基底层,甚至可以是在一个不平整的表面上。目前从事PLED研究的公司有:Philips、Toshiba-Matsushita显示器、DuPont、Microemissive显示器、Samsung SDI和Seiko-Epson等。国内从事高分子OLED研究的单位还比较少,中国科学院化学研究所、复旦大学、华南理工大学已取得了这方面研究的一些专利。高分子OLED技术领导商CDT采取较开放的专利授权态度,降低投入厂商门槛和成本。
2008年5月“SID”展会上,索尼称已经开发出首款基于柔性塑料基底的、全彩色的有源矩阵OLED显示器。索尼采用了C22H14并五苯材料来制造迁移率为0.1 cm2/Vs的有机晶体管。其原型为120×160像素、8位灰阶的2.5 in显示器,可以显示全部的1 680万色,电极
装在有机TFT层前面,不会损坏半导体层。UniversalDisplay公司声明他所开发的业界最薄柔性的活动矩阵式OLED(AMOLED)显示屏原型机面世将指日可待。从Universal Display公司和Kyung Hee大学金江教授的合作结果来看,该公司的研究演示了其意义深远的柔性度提高,以及当内置超薄金属铂片基底后AMOLED的韧性。
2008年12月台湾工业技术研究院展示厚度仅为0.2 cm、弯曲半径<1.5 cm、亮度达100 cd/m2、分辨力为320×240柔性主动式OLED面板,在任意卷曲弯折过程中,动画仍能持续播映;三星展示了2.2 in AMOLED显示屏,厚度0.52 mm、分辨力320×240、色彩262K、对比度10 000∶1,在200 cd/m2的亮度下可以使用长达50 000 h。
下一步研究方向
尽管柔性OLED器件自身具备很多优势,而且柔性OLED器件在材料寿命、驱动、亮度、彩色化和柔性等方面均有较大的进展,但其产业化进程低,其原因主要是寿命问题和高效率问题还未彻底解决。而要解决这些问题,还需靠在器件结构的设计与材料合成、实验条件设计与加工、驱动与封装技术等多方面的共同努力。对于OLED的基础研究主要集中在提高器件的效率和寿命等性能以及寻找新的、改进的材料上。
在全球高端存储芯片产业格局加速重构的背景下,HBM4技术研发已成为DRAM三巨头战略博弈的核心战场。三星电子近期公布的产能扩张计划显示,该公司正通过大规模技术投资构建差异化竞争优势,力图在下一代高带宽存储器领域实现弯道超车。
随着工业4.0和智能传感技术的快速发展,高精度运算放大器(运放)作为信号链的核心器件,其性能直接影响精密测量系统的可靠性。2025年,润石科技推出的RS8531/2系列超低噪声、零漂移运放,以0.15μVpp的1/f噪声和1.2μV失调电压的突破性参数,展现了国产半导体企业在高端模拟芯片领域的技术实力。该产品不仅对标国际大厂同类器件,更在多个关键技术指标上实现超越,成为精密仪器、医疗设备等领域的优选方案。
全球消费电子产业迎来重大技术革新,苹果公司近日被曝出正在加速推进其首款人工智能穿戴设备的研发进程。据彭博社援引知情人士消息称,苹果工程师团队正致力于在2026年底推出代号N401的智能眼镜产品,该设备将集成摄像头阵列、定向麦克风及骨传导扬声器系统,通过深度融合环境感知与AI运算能力重新定义人机交互方式。
2024年5月23日,豪威集团(OmniVision)宣布推出车规级智能高边开关芯片ONXQ000系列,计划于2025年6月投入量产。该产品针对车载摄像头、超声波雷达等传感器在智能驾驶与数字座舱中的供电痛点,通过四通道集成设计、ASIL-B功能安全认证及创新负压保护技术,为域控制器供电方案提供更高安全性与灵活性。
据韩国半导体行业媒体5月22日报道,三星电子半导体部门(DS Division)正面临战略性抉择。继三星生物制剂拆分CDMO业务后,市场对三星晶圆代工业务独立运营的预期显著升温。当前决策的核心矛盾源于客户企业对"设计与制造一体化"模式的信任危机,以及该部门持续亏损的经营现状。