微胶囊电泳显示的原理分析

发布时间:2010-12-27 阅读量:1656 来源: 发布人:

【中心议题】

  •     *微胶囊电泳型电子纸的基本结构
  •     *微胶囊电泳显示原理

【解决方案】

  •     *将电泳液封装在粒径50150um的微胶囊内,在透明电极板上进行单层涂布
  •     *每个微胶囊都有透明的外壳,胶囊内充满颜料溶液和悬浮于其中的大量的带电荷的颜料粒子

1 微胶囊电泳型电子纸的基本结构

1.1 ITO导电玻璃

ITOindium tin oxide,氧化铟锡)导电玻璃是一种既透明又导电的玻璃,它采用磁控溅射沉积成膜技术,以ITO材料作为溅射靶材,在玻璃基板上生成一层很薄的ITO膜。这层ITO膜同时具有良好的导电性和透光性,适于制作透明显示电极,是平板显示器生产的重要原材料之一。玻璃基板的厚度通常只有0.31.1mm,它具有重量轻、透明度高、平整度高、有一定的机械硬度、容易切割加工等特点,因此被广泛应用于平板显示器上。ITO导电玻璃随着20世纪70年代初LCD显示器的兴起至今已经历了30多年的历程,并从过去只能生产高电阻、小尺寸、普通表面、黑白显示的产品,发展到了现在能够生产低电阻、大尺寸、抛光表面、彩色显示的产品。

1.2微胶囊电泳显示器件构造

微胶囊电泳显示器是将电泳液封装在粒径50150um的微胶囊内,在透明电极板上进行单层涂布制备的。图中微胶囊电泳显示器件示意图中的透明显示屏和透明电极可选用透明导电的ITO玻璃,如果想要制作柔性的显示器,就可以选取淀积了复合ITO膜的聚碳酸酯透明薄膜代替玻璃。中间的显示主体部分被称为电子墨水,它是将微胶囊化后的电泳液借助透明的胶粘剂涂覆到显示屏和驱动电路板之间的,每个近似球形的微胶囊之间都填充满了透明的粘性介质。电泳液中的材料选取有多种组合,微胶囊的合成方法也有多种,选用的黏性介质也可不同,显示主体的胶囊层也未必是单层结构,具体情况视制作出的微胶囊性质、涂覆工艺、显示器要求而定。最下层的驱动电路板可根据需要选取。

虽然随着近几年人们对微胶囊类电子纸的研究逐渐深入,但是制作出来的电子纸结构基本没有差别。都是把制作出的微胶囊分布在粘着剂中构成分散体系,涂布或者印刷在导电玻璃基板或柔性透明塑料电极上,根据电子墨水的成分特征设计驱动电路参数,在有源矩阵驱动下就可以进行性能良好的显示。

由此可见,除去目前驱动电路的制作水平对电子纸的显示性能有影响外,微胶囊类电子纸的显示性能主要是由微胶囊包覆的电泳液来决定。

2 微胶囊电泳显示原理

电子纸由数百万个微胶囊组成,每个微胶囊都有透明的外壳,胶囊内充满颜料溶液和悬浮于其中的大量的带电荷的颜料粒子。从其中包覆的颗粒种类来说明微胶囊电泳显示的原理。

2.1 单粒子微胶囊型电泳显示

1995年,Joseph Jacobson在斯坦福大学做物理学博士后时将一种白色带电微粒放在深蓝色溶剂中然后用微胶囊包覆制成。利用电泳技术,当施加一种电场时,使带正电的白色二氧化钛颗粒停留在微囊的可见一侧,形成一张白色的页面。而当施加反向电场时,就把这些白色粒子拉到另一侧,被深色溶剂所掩盖,对光的反射强度减弱。直到一个正电荷脉冲又把白色的颗粒送回原位。把上面这一过程倒过来,就可以在蓝色背景上产生白色的字母。利用不同方向和大小的电场处白色粒子对光的反射强度不同来进行图像显示。

2.2 双粒子微胶囊电泳显示

为了增强对比度,在胶囊内包裹两种电泳颗粒来实现“双粒子”显示。将黑白颜色的微粒装入微胶囊中,这两种颗粒带有相反的电荷,在没有电场的情况下,粒子在布朗运动下随机分布,此时呈现中间色,当上极板带负电荷时,微胶囊内的白色颗粒向上极板运动,黑色颗粒向下极板运动,使上极板呈现白色;施加反向电场时则相反,使上极板呈现黑色。当同一胶囊内粒子带有相反电荷时,粒子之间会互相吸引而产生团聚,难以实现重复稳态显示。故一般要求粒子尽可能带同种电荷,不同颜色的粒子具有不同的Zeta电位,以便在相同的电场作用下具有不同的电泳迁移率,这样就可以通过控制施加电场的方向和时间来控制所要显示的颜色。

2.3 包含两种以上颗粒的微胶囊电泳显示

有的胶囊里包含两种以上的颗粒,这里要求不同颜色的颗粒应该具有不同的电泳迁移率,即具有不同的zeta电位,这样就可以通过控制施加电场的方向和时间来控制所要显示的颜色。如Albert在其全彩色的电子墨水显示装置中使用了三种颜色的颗粒,其颜色分别是紫红色、绿色、黄色,使用的分散介质是卤代烃(四氯乙烯、聚三氟氯乙烯)。

相关资讯
国产感烟探测器MCU破局:BA45F25343/53/63如何实现精度与成本双赢?

在消防安全需求升级与物联网技术融合的背景下,Holtek(盛群半导体)推出BA45F25343/53/63系列MCU,以双通道感烟AFE(模拟前端)为核心,结合高度集成的电源管理与智能算法,实现感烟探测器在精度、成本、可靠性三大维度的突破性提升。该系列通过内置双通道LED驱动、5V/9V多电压输出及失效报警功能,不仅解决了传统方案外围电路复杂、误报率高(行业平均>2%)的痛点,更以国产替代能力打破海外厂商(如ADI、Microchip)在高端消防芯片市场的垄断,成为智能消防终端、工业安全监测等场景的行业标杆。随着智慧城市与安规政策驱动,BA45F系列有望在百亿级消防物联网市场中占据核心地位。

能效与体积的双重革命:解码Microchip新一代电源模块的六大核心优势

在边缘计算与工业自动化高速发展的当下,电源管理技术正面临高密度集成与能耗优化的双重挑战。Microchip推出的MCPF1412高效全集成12A电源模块,以行业领先的5.8mm³超小封装、95%以上能效转换率及智能化数字接口,直击设备小型化与能源损耗的核心痛点。本文从技术解析、性能突围、国产替代路径及市场前景多维度切入,深度剖析该模块如何通过创新的LDA封装与PMBus®兼容设计,在工业控制、数据中心及新能源领域重构电源管理标准,为国产替代与全球竞争提供关键技术启示。

16nm工艺硬核突围 易灵思车载FPGA技术图谱深度解析

在第二十一届上海国际车展的智能驾驶技术专区,易灵思(展位2BC104)首次公开展示其钛金系列FPGA完整技术生态,两款基于16nm FinFET工艺的旗舰产品Ti60/Ti180,配合全栈式开发平台,构建起覆盖智能座舱、自动驾驶域控制器、车载传感三大核心场景的解决方案。

颠覆性技术突破!英特尔18A工艺斩获四大客户,台积电2nm制程迎来劲敌

全球半导体制造格局迎来关键变量。根据产业链最新消息,英特尔的Intel 18A制程节点已获得英伟达、博通、IBM等多家行业巨头的代工订单,首批验证芯片反馈积极。这意味着在台积电主导的先进制程领域,美国本土终于出现具备竞争力的替代方案。

“舱驾一体”时代来临:深度解析天玑C-X1如何挑战高通霸主地位

在2025年上海国际车展上,联发科技(MediaTek)以天玑汽车旗舰座舱平台C-X1与联接平台MT2739的发布,正式吹响了“AI定义座舱”的号角。作为全球首款基于3nm制程的车规级芯片,C-X1凭借双AI引擎架构、NVIDIA Blackwell GPU集成及400TOPS的端侧AI算力,不仅突破了传统车载芯片的算力天花板,更通过云端-端侧一致性开发生态,实现了低延迟语音交互、实时旅程规划等生成式AI功能的规模化落地。而MT2739作为5G-Advanced技术的标杆性产品,率先支持3GPP R18协议及卫星通信技术,解决了复杂场景下的网络稳定性难题。这两大平台的协同,标志着MediaTek在智能汽车领域完成了从芯片性能到生态整合的全链条布局,直面高通8155等竞品的市场优势,并加速国产替代进程。随着智能座舱渗透率预计在2025年突破60%,MediaTek正以技术革新重塑行业格局,推动中国汽车芯片从“跟随”迈向“引领”的跨越式发展。