发布时间:2010-12-29 阅读量:2631 来源: 发布人:
中心议题:
* 省去滑环设计
* 第一次试制时内芯采用铁块
三菱电机试制出了不使用钕类磁铁的驱动用马达(图1),用电磁铁取代了嵌入转子的钕类永久磁铁。
图1:爪极型马达试制品的转子
两次试制的产品。不使用稀土类磁铁,目标是实现与已有的混合动力车(HEV)同等的输出功率密度及转矩密度。
开发目标是混合动力车(HEV)使用的驱动马达。HEV用马达通常配备在发动机附近,要求具有高耐热性,此外还与发动机一同安装在发动机室内,需要缩短轴长。新型马达解决了这些课题。
此次开发的马达采用发动机汽车的发电机所采用的、被称为爪极(Claw Pole)型的转子构造。转子的各极形成了爪与爪交错重叠的构造。
图2:马达试制品的构造
在转子内部配备专用线圈“励磁线圈”,通过直流电流。转子的磁极呈N极与S极交错排列状态。
爪极型马达并未像已有的HEV用马达那样在转子内部嵌入稀土类磁铁,而是在转子内部配置了专用线圈“励磁线圈”(图2及表)。励磁线圈在转子磁极内部围绕着中心轴配置。
省去滑环
不过,普通发电机采用转子和励磁线圈同时旋转的构造,因此需要配备滑环和电刷。而此次不同,转子与用于卷取线圈的底座是分离的。线圈和线圈底座固定在马达机架上,所以即使转子旋转,线圈和线圈底座也不会转动。由于可省去滑环和电刷,因此不存在如何来确保电刷寿命的问题。另外,通过使用供电线来通过大电流,还可瞬间产生高转矩。
此次开发的马达只是转子的技术提案,因此定子能够与集中绕组及分布绕组等各种绕线方式相组合。
从转子的N极发出的磁通量在穿过定子的绕线后再返回至转子上相邻的S极。如果缩短转子表面的爪状磁极间的空隙,励磁线圈产生的磁通量就无法充分到达定子,而在转子内部发生短路,因此需要一定程度的间隙。不过,间隙过大的话,磁极表面的面积就会减小,使转矩降低,所以需要确保适当的数值。
在开始开发的2008年度通过的第一次试制中通过加大发电机确认了基本性能,对实现目标有了一定的把握。不过,只是单纯加大发电机的话,用于HEV时性能就会存在极限。因此,2009年度进行了第二次试制,并计划在2011年度完成最终试制。
在性能上是力争达到与最大输出功率为10kW,最大扭矩为100N·m级别的弱HEV用马达同等的性能。计划在最终试制前提高至与已有HEV马达相当的水平,即输出功率密度为1kW/kg,扭矩密度为5N·m/kg(图3)。
图3:开发目标
以实现与已有HEV同等的转矩密度(5N·m/kg)及输出功率密度(1kW/kg)为目标推进开发。(引自日本能率协会)
第一次试制时内芯采用铁块
第一次试制的爪极型马达与发电机一样用铁块制成转子芯。转子芯每隔一极组合两块爪状部件(图4)。两块转子芯部件通过非磁性环连接。
图4:转子的构成部件
重叠两块转子部件,在内部配置线圈。(引自日本能率协会)
转子芯被固定在输出轴上产生转矩,只有成为励磁线圈底座的部分经由间隙与转子芯体分离。励磁线圈基座被固定在马达机架等外部构造部件上。励磁线圈基座的作用是在支撑圆筒状励磁线圈的同时,通过材质采用磁性材料来承当励磁线圈的磁路。线圈中通过直流电(DC)的话,转子就会产生固定方向的磁通量。该磁通量取代了永久磁铁。第一次试制时的主要指标如下。定子的轴长为35mm,外径为260mm。转子的极数为32,外径为218mm,轴长为60mm。
第一次试制由于内芯发生磁饱和,因此磁通量的提高存在极限(图5)。经模拟显示,转子端线圈的励磁磁动势达到3000AT(ampere-turn,安匝数)的话,产生的磁通量(Wb)就会增加,而励磁磁动势达到3000AT以上时,即使增加电流及绕线圈数,磁通量也不会增加。
图5:第一次试制时出现的磁饱和
(a)励磁磁动势在3000AT附近时磁通量出现饱和。(b)励磁磁动势在2000~3000AT时间隙磁通量密度也存在极限。(引自日本能率协会)
从磁通量密度(T:特斯拉=Wb/m2)来看,第一次试制时的平均磁通量密度在励磁磁动势超过3000AT时,即使增加线圈电流及绕数圈数,也只能最多达到0.5T左右,低于普通钕磁铁马达产生的0.6T。
近年来,全球对空气质量的关注度显著提升,PM2.5污染、病毒传播及室内异味等问题推动了对高效空气净化技术的需求。在此背景下,株式会社村田制作所于2025年3月正式推出MHM3系列(直流输入系列)的负离子发生器“MHM332型”,计划于同月启动批量生产并提供样品。这一创新产品不仅延续了村田在电子元器件领域的技术优势,更通过性能升级为家电厂商和消费者提供了更高效的空气净化解决方案。
随着人工智能(AI)和机器学习(ML)对数据中心网络带宽和能效要求的激增,光电路交换(OCS)技术凭借其低延迟、高能效和协议透明性,逐渐成为超大规模数据中心的核心组网方案。然而,传统光收发器难以应对OCS引入的高达3dB的额外插入损耗,导致传输距离受限。2025年4月1日,全球光通信领导者Coherent高意(NYSE: COHR)在OFC 2025展会上推出全系列OCS优化光收发器,通过技术创新实现链路预算与传输距离的平衡,为AI数据中心网络提供灵活高效的解决方案。
全球电子元器件分销商e络盟近日宣布与美微科(Micro Commercial Components,简称MCC)签署全球分销协议。此次合作将依托美微科在分立半导体领域的技术优势,为全球汽车、工业自动化、消费电子及数据中心等行业客户提供超过10,000种高性能解决方案,其中包含2,500余款符合车规级标准的尖端产品。
芯原股份(股票代码:688521.SH)今日正式发布革命性ISP9000系列图像信号处理器IP,为智能机器、AI PC及安防监控领域带来突破性视觉解决方案。该产品通过AI驱动架构、多域降噪系统及智能调优技术,在极暗光场景下实现超越人眼的成像质量,标志着机器视觉处理能力迈入新阶段。
3月31日,移远通信宣布其FGM842D系列超小型Wi-Fi 4与BLE 5.2双模通信模组正式进入量产阶段。这款专为智能家居与工业物联网打造的模组通过ARM968处理器实现160MHz高速运算,配合-40℃至105℃工业级宽温域支持,在紧凑的12.5×13.2mm空间内集成多重安全防护机制,为设备制造商提供高可靠性的无线连接解决方案。