汽车应用中高亮度LED驱动电路

发布时间:2011-01-19 阅读量:1129 来源: 发布人:

中心议题:
    * 汽车LED照明驱动电路
    * 使用开关电源驱动LED的保留措施
解决方案:
    * 降低开关电源工作频率
    * 开关晶体管放置在电路板的中心区域
    * 使用快速恢复二极管
    * LED区不要形成电流环路
    * 缩短电缆和印制电路板上走线

近年来,高亮度LED应用发展神速,特别是在指示牌、交通信号灯方面。而对汽车应用来说,LED亦有极大的吸引力,长寿命、抗震、高效、对光源良好的控制 能力,都是它的优势。当然,相对于白炽灯,LED需要驱动电路,还有汽车电气是靠酸铅蓄电池供电的,是机械驱动的交流发电机充电,这类电池适合白炽灯,不 适用LED,因此,设计一种稳压性能良好而又低噪声的驱动电路是十分必要的。

理论上,LED光输出与驱动电流有关,而与电源电压无关。最对低要求应用,如果电源电压稳定的话,一个电阻就可限制电流。值得注意的是,对这种最简单的应 用电路,LED在一定程度上显示出自稳定特性。亦即,若温度升高的话,LED的光输出减少,但同时其正向压降亦降低,使驱动电流增加,从而补偿了较高温度 下光输出的减少。

遗憾的是,汽车电源的变化范围是很大的,在8V-18V之间,峰值电压可达几十伏。此外,高亮度LED驱动电流大,会在电阻上产生大量的热量,使散热设计复杂化。

相对简单的方案是使用线性降压稳压器(图1),D1是一个稳压二极管,通过LED的电流设定为VD1/RSET。D2对基极二极管进行湿度补偿。这个电路 仍然存在能量损失问题和电阻散热问题。对于低电流LED,尤其是串联后的LED正向压降和稍低于电源电压的场合,这个电路不失为经济有效的方案。
 
  图1简单稳流电路
在多数场合,开关电源提供一种更佳的电气解决方案。顾名思义,开关电源是开关工作的,在一个周期,对RLC电路充电;在下一个周期,存储的能量用来驱动负 载。这类电路效率极高,一般都能达到90%以上,开关稳压器能提升电压,降低电压,还能产生极性相反的电压,这是线性稳压器所不具备的。

最简单的开关稳压器是图2所示的降压稳压器,输入电压与LED电压之间的压差对电感L充电,电流随之增加,当电流达到预设的值时,控制电路将串联的晶体管关闭,在LED通路形成一个交变电流。注意,在LED驱动应用中,开关稳压电路控制电流的峰值。

这个值由可编程IC或外部元件来设定。电流值也由FET开关漏极上检测电阻来定义。降压稳压器流过LED的电流是连续的,但是交变的,而对电源而言是不连续的,这对电源工作会产生一定的影响,也增加了电源线上的噪声。
 
图2降压型开关稳流电路

 
如果电源电压低于所有LED串联电压和,就要选用升压稳压器。升压稳压器(图3)既要控制电流,又要控制电压,电路相对复杂些。升压稳压器在大电流情况下 同样存在严重的干扰问题。因而最稳定又最安全的LED驱动器可采用升压与降压相结合的形式。一个升压稳压器可驱动几个并联的降压稳压器。这样,面对电源的 是性能良好的升压稳压器,而在负载端则是高电流输出的降压稳压器。
              
图3升压型开关稳流电路

所有开关电源都会产生噪声,电压型稳压器可以提高工作频率,在输出端用大电容来滤波,LED电源是稳流型的,降低噪声就得采取如下措施:

•降低工作频率。
•开关晶体管应用放置在电路板的中心区域。
•快速恢复二极管。
•LED区不要形成电流环路。
•缩短电缆和印制电路板上走线。

除了上述措施,新的方案也有助降低驱动电源的噪声。Melexis公司的MLX10801和MLX10803LED驱动器采用伪随机开关频率发生器来降低 电气噪声。图4是低噪声应用的电路实例,它符合CISPR25的5级标准,这里CISPR是国际无线电干扰特别委员法文的缩写。工作电感L1应根据开关频 率和LED电流来确定。为了方便用户设计,公司还提供了一个软件和Excel表格,用来选取ROSC、RSET和RSENSE。

  
图4MLX10803应用实例

对图4电路,开关频率应低于150KHz,若LED电流在0.5-1A之间,L1与L2为100?H。噪声是宽带的,因而滤波电容采用大、小相结合的方案。二极管D1是高频噪声的主要来源,应仔细选择,在电源电压低于100V时,可使用肖特基二级管。

GaAs与GaAsPLED的光输出强度与结温密切相关,例如LED在25℃输出100%的话,在80℃时只有80%。驱动器设置了温度斜度补偿电路,实 际上一个PTC或NTC电阻便可解决问题,利用PTC的温度系数来平衡LED的光输出。为了保护LED,在温度高于80℃,可以在器件的输入端增加一个 NTC电阻。

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"