发布时间:2011-02-14 阅读量:846 来源: 发布人:
无电解电容LED的中心议题:
* 无电解电容LED驱动解决方案受到市场青睐
* 美芯晟科技推出了基于MT7920的无电解电容LED驱动解决方案
无电解电容LED的解决方案:
* 采用容值较小的CBB高压陶瓷电容或薄膜电容取代了高压电解电容
* 输出电容用陶瓷电容替代电解电容
LED灯珠作为一个半导体器件,其寿命长达50,000小时以上。而LED照明驱动方案中普遍用到电解电容,其寿命则仅为5,000~10,000小时。这样电解电容的短寿命与LED灯珠的长寿命之间有一个巨大的差距,削弱了LED的优势。因而无电解电容LED驱动解决方案受到市场青睐。
美芯晟科技推出了基于MT7920的无电解电容LED驱动解决方案(见图1)。在该方案中,在全桥堆之后,采用容值较小的CBB高压陶瓷电容或薄膜电容取代了高压电解电容,去掉了电解电容,同时也提高了功率因子(PFC,在85VAC~265VAC范围可以全程高于0.9)。而输出电容C8和C9可以用陶瓷电容替代电解电容。从而实现了完全无电解电容。
图1、基于MT7920的隔离LED驱动方案。
* 当输出电容C8、C9采用470uF电解电容,驱动6颗LED时,测量结果如下:
输入电压Vin = 220VAC,输入功率Pin = 7.54W
输出电压Vo = 19.33V (万用表读数)
输出电流Io = 327mA (万用表读数)
输出功率Po = Vo * Io = 6.32W
效率η = 6.32/7.54 = 83.8%
采用电解电容时的输出电压,电流的波形如图2所示。从波形图上可以看出,输出电压、电流均存在一定的纹波。这在单级PFC恒流驱动方案中不可避免的,加大输出电容C8、C9,可以进一步减小输出纹波。同时我们注意到示波器上电流、电压的平均值与万用表的读数基本相同。也即是万用表所测量到的直流电压、电流值为平均值。
图2、输出采用电解电容(470uF X 2)时的电流、电压波形
(Ch1=蓝色:输出电压; Ch4=绿色:输出电流; 数学运算=红色:Ch1*Ch4)
进一步,在示波器上,用输出电压与输出电流相乘所得的瞬时功率曲线的平均值6.34W也基本与用平均电压与平均电流相乘所计算的功率相同。
* 当输出电容C8、C9采用22?F陶瓷电容,驱动6颗LED时,测量结果如下:
输入电压Vin = 220VAC,输入功率Pin = 8.10W
输出电压Vo = 19.07V (万用表读数)
输出电流Io = 334mA (万用表读数)
输出功率Po = Vo * Io = 6.37W
效率η = 6.37/8.10 = 78.6%
采用陶瓷电容时输出电压、电流的波形如图3所示。与用电解电容时相比,输入功率增加了约0.56W(8.10W – 7.54W),而输出功率按万用表读数计算基本不变(6.37W vs. 6.32W),从而导致效率降低了5%。情况真的如此吗?0.5W的功率跑哪里去了?
图3、输出采用陶瓷电容(22uF X 2)时的电流、电压波形。
(Ch1=蓝色:输出电压; Ch4=绿色:输出电流; 数学运算=红色:Ch1*Ch4)
在图3中,用输出电压与输出电流相乘所得的瞬时功率曲线的平均值为6.86W,而不是用平均电压与平均电流计算得到的6.37W,二者相差 0.49W,正好补上了输入端增加的0.56W。新的效率应该是η = 6.37/8.10 =84.7%。因此效率是没有下降的。
为什么在无电解电容(采用陶瓷电容)方案中,输出功率的计算会有如此的不同?原因在于陶瓷电容的容值较小,导致输出电流的纹波巨大,电流的最低值甚至已经触底为零值了。此时,输出电流的纹波已经大于其直流平均值了,也即是输出电流已经是一个交流电流了。再采用平均电流来计算输出功率就不合适了。
正确的输出功率计算方法是:Po = Vo_rms * Io_rms * PF。式中Vo_rms和Io_rms分别为输出电压和电流的均方根值,PF为功率因子。图4是输出为陶瓷电容时,输出电压及电流的波形及均方根值。与图 3比较可以发现,对于交流电流来说,平均值与均方根值不再相等了。
图4、输出采用陶瓷电容(22uF X 2)时的电流、电压波形。
(Ch1=蓝色:输出电压; Ch4=绿色:输出电流; 数学运算=红色:Ch1*Ch4)
但是功率因子PF不太容易测量,用上述的公式在操作上有一定的难度,而采用瞬时功率(瞬时电压乘以瞬时电流)的平均值来计算输出功率就比较容易,这个操作可以在示波器上很容易地实现。在用电解电容的方案中,由于电解电容的容值比较大,输出电流的直流值远大于纹波值,其平均值与均方根值基本相等,用平均电流来计算输出功率就不会引入太大的误差。
2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。
2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。
2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。
2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。
2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"