白光LED的解决方案

发布时间:2011-03-24 阅读量:1125 来源: 发布人:

中心议题:
    * 在蓝光LED上加荧光粉制成LED的结构
    * 荧光粉涂层对白光LED发光均匀性的影响
    * 高演色性白光LED及商品化白光LED的演色性

最简单的白光LED是在蓝光LED上加**荧光粉得到的,又称其为1-PCLED(Phosphor Converted LED),其基本构造如图1所示。因为这种LED采用了环氧树脂封装,所以光易于放出,所用荧光粉主要成分是YAG:Ce,其化学组成是(Y1-aGda)3(Al1-bGab)O12:Ce3+,Gd(Gadolinum,钆)可以改变Ce3+晶体电场,使光的波长增加而发黄光,图2(a)是465nm蓝光LED在室温20mA时的电致发光(EL:Electroluminescence)光谱,图2(b)是蓝光LED激发YAG:Ce荧光粉所产生的光谱,产生555nm黄光,此黄光与蓝光混合而成白光。图3是不同含量YAG:Ce荧光粉在色度图中的位置,图中并有蓝光LED与不同含量荧光粉所产生白光在图中的位置。

图1 图2

图2

图3

R.Mueller-Mach等人用理论计算出,当LED与荧光粉发光功率不同比例时,460nm蓝光LED加YAG:Ce荧光粉所产生白光的色温CCT值、演色性Ra值及发光效率列在图4的插表中,图4是其光谱图。当色温大于5000K时,Ra>80。图5(a)是同一成分P7193荧光粉所产生白光的CCT分布图及其Ra值,图5(b)则是同一波长蓝光LED但成分不同的YAG荧光粉所产生白光的CCT分布图及其Ra值,由图可知,Ra的值均在60~80范围的值,似乎不太理想。

图4

图5

图5

R.Mueller-Mach等人又用理论计算出,pn结温度对1-pcLED的影响,其结果如图6 (a)所示,图6 (b)是实验结果,两者颇为相近,由图可见,温度上升时,色温及Ra值均上升。

图6

M.R.Kramas等人发现,如果将荧光粉随意放在LED芯片上,如图7(a)所示发光均匀性不佳,所以改变方式如图7(b)所示,将荧光粉均匀地涂在LED表面上,图7(c)则比较两者的CCT及Ra值,发现用图7(b)方法者其CCT值变动甚少。图8是Lumiled公司2002年发表的最佳白光结果,光输出在350mA时大于40 lm。

图7

图8

YAG:Ce荧光粉因为缺少红色,所以Ra值不高,G.O.Mueller等人加强YAG:Ce的红色使Ra值>90,其光谱如图9所示。

图9

因为一个荧光粉的Ra值较低,R.Mueller-Mach等人利用了两种荧光粉,一种荧光粉产生绿光TG:Eu(SrGa2S4:Eu2+),另一种荧光粉产生红光SrS:Eu2+,图10是此两种荧光粉的激发及辐射光谱。图11所示是TG:Eu荧光粉特性以及激发与辐射光谱。

图10

图11

图12

R.Mueller-Mach等人又用理论计算出,在蓝光LED加以上两种荧光粉后的、在不同B/G/R发光功率时的光谱,如图12所示,图中有插表,可见其Ra值大于90。图13是蓝光LED及TG:Eu与SrS:Eu荧光粉在CIE色度图中的位置。图14所示是实验结果,图14(a)是用不同R/G/B发光功率做成白光的光谱,Ra>85,CCT=3200~4400K,图14(b)是2pcLED的Ra与CCT值的关系,大部分Ra大于80。

图12

图13

图14

H.Wu等人用SrGaS4:Eu2+作蓝色荧光粉、用Ga1-xSrxS:Eu2+作红色荧光粉得到的白光LED的CCT约为5937K,Ra约为92.2,K约为15 lm/W。

最近R.Mueller-Mach等人用6组两种荧光粉、用Ga1-xSrxS:Eu2+作红色荧光粉得到CCT=3000K的白光,这6种组合的光谱如图15所示,图中附表是此6种组合产生的白光在3000K时的Ra及发光效率K值,并有详细的R1到R8值及平均值Ra,另附有R9值以表示其红色的反应在32~86之间,红色似乎不够高。

图15

因为1pc缺乏红色,所以R.Mueller-Mach等人在YAG:Ce荧光粉上加深红色荧光粉CaS:Eu2+改变其比例,得到如图16所示的不同色温的光谱,图中附表有R1到R8的值及Ra平均值,以及R1至R14的R平均值,在CCT 2880K时Ra约为91.9、R约为88.9, CCT=3300K时Ra约为93.2、R约为90.9,CCT=3800K时,Ra约为94.4、R约为92.8。

图16

Nichia公司的I.NiKi等人利用最新发展的蓝光LED(19.3mW@20mA,ηext~35.8%)与YAG荧光粉制成高功率白光LED,其光强度、发光效率与电流的关系如图17(a)所示,CCT=5470K,ηL=61.4 lm/W,在CIE色度图中的坐标是当0.333mA、0.346mA、20mA时4.22 lm(3.44V),比白炽灯亮四倍,在低电流时ηL约为 100 lm/W。图17(b)所示是Ra值与色温CCT的关系,在色温高是Ra尚可,但是在低色温时,Ra因缺少红色而下降。本想建议用有硫(S)的荧光粉以增加红色,但因有硫的材料不稳定故另行发展了新的荧光粉,图17(c)中比较了短YAG(黄光540nm)、长YAG(黄光570nm)及新的红色荧光粉(655nm)的PLE光谱,图17(d)是短YAG、长YAG、新的红色荧光粉受蓝光激发时的放射光谱。

图17

图17

图18(a)中比较了高演色性白光LED与目前已商品化的白光LED的光谱,高演色性白光LED是在蓝光LED上加短YAG及新的红荧光粉而制成的。由图可知,高演色性白光LED的红色部分增加。图18(b)中比较此两种LED的演色性,可见高演色性白光LED的Ra值较高,图18(c)中则比较高功率及高演色性白光LED的光谱,这两种LED是比较暖和的白光LED,高功率白光LED在20mA时1.49 lm,CCT约为2810K,ηL约为23.1 lm/W,Ra=72.5,高演色性白光LED在20mA时1.23 lm,CCT约为2830K,ηL约为18.9 lm/W,Ra=87.5。图18(d)中比较高及高演色性白光LED的Ra值,高演色性白光LED的Ra值较高。

最近H.Y.Chou等人在蓝光LED上加YAG荧光粉得到的Ra值约为70,然后再加上625nm红光LED或者617nm红橘光LED,将Ra值提高到80以上,而CCT接近3500K。

图18

图18

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"