适用于大功率电池组的电池管理架构

发布时间:2011-06-8 阅读量:1193 来源: 我爱方案网 作者:

中心议题:
    * 如何用最小的电池组实现最大的容量


汽车和工业设备制造商一般要求电池寿命超过 10 年,这些制造商还会规定所需的可用电池容量。对于电池系统设计师来说,挑战就是如何用最小的电池组实现最大的容量。为了实现这个目标,电池系统必须用精准的电子组件仔细控制和监视电池。

大功率电池组系统
用于电动汽车或工业设备的大功率电池组系统由很多串联叠置的电池组成。一个典型的电池组含有的电池可能有 96 个之多,就充电至 4.2V 的锂离子电池而言,总共能产生超过 400V 的电压。

尽管系统将电池组看作单个高压电池,对电池组中的电池同时充电或放电,但是电池控制系统必须独立考虑每一个电池的状态。如果电池组中一个电池的容量比其他电池略低,那么经过多个充电/放电周期之后,其充电状态 (SOC) 将逐渐偏离其余的电池。如果这节电池与其余电池的充电状态没有周期性地进行均衡,那么该电池最终将进入深度放电状态,从而损坏,并最终导致电池组故障。因此,必须监视每节电池的电压,以确定充电状态。此外,还必须预先采取措施,使电池能单独充电或放电,以均衡电池之间的充电状态。

与监视系统通信
电池组监视系统需要考虑的一个重要因素是通信接口。就印刷电路板 (PCB) 内部的通信而言,常见的选择包括串行外围接口 (SPI) 总线和内置集成电路 (I2C) 总线。这两种接口的通信开销都很低,适合于低干扰环境。

另一种选择是 CAN 总线,该接口在汽车应用中得到了广泛采用。CAN 总线非常可靠,具有差错检测和容错能力,但是通信开销很大,材料成本很高。尽管从电池系统到主 CAN 总线有一个接口也许是可取的,但在电池组内部,SPI 或 I2C 通信是有利的。

诸如凌力尔特的 LTC6802 电池组监视器 IC 等器件测量由多达 12 节电池组成的电池组的电压,多个 LTC6802可以从电池组的低端到顶端串联叠置,该器件还有内部开关,允许单节电池放电,以使该电池与电池组中其余电池的容量达到均衡状态。

为了说明这种电池组架构,我们考虑一个有 96 节锂离子电池的系统。监视整个电池组需要 8 个电池组 IC,每个器件都以不同的电压工作。

采用 4.2V 锂离子电池,底端监视器件监视 12 个电池,电压从 0V 至 50.4V。下一组电池的电压范围为 50.4V 至 100.8V,沿着电池组向上依次类推。

这些器件以不同的电压工作,它们之间的通信带来了巨大挑战。人们已经考虑了各种方法,考虑到系统设计师的侧重点不同,每种方法都有各自的优点和缺点。

电池监视的要求
在确定电池监视系统的架构时,至少需要均衡 5 个主要的要求。这些要求的相对重要性视最终客户的需求和期望的不同而不同。

1. 准确度:为了充分利用最大的电池容量,电池监视器必须是准确的。不过,汽车和工业系统充满噪声,电磁干扰存在于很宽的频率范围内。准确度有任何损失都将给电池组的寿命和性能带来负面影响。

2. 可靠性:无论使用什么样的电源,汽车和工业制造商都必须满足极高的可靠性标准。此外,某些电池的高能量容量和潜在的易变性也是主要的安全隐忧。在保守条件下停机的故障保险系统比较适合灾难性电池故障,尽管这种系统有可能不幸使乘客滞留或使生产线暂停。因此,电池系统必须仔细监视和控制,以确保在系统的整个寿命期内实现全面控制。为了最大限度地减少虚假和真实故障,一个良好设计的电池组系统必须保证可靠的通信、采用可最大限度地减少故障的模式和具备故障检测功能。

3. 可制造性:新式汽车中含有种类繁多的电子组件和复杂的布线线束。增加复杂的电子组件和配线以支持电动汽车 / 混合电动汽车 (EV/HEV) 电池系统会给汽车制造带来更多挑战。必须最大限度地减少组件和连线,以满足严格的尺寸和重量限制,并确保大批量生产是实际可行的。
4. 成本:复杂的电子控制系统可能很昂贵。最大限度地减少相对昂贵的组件 (如微控制器、接口控制器、电流隔离器和晶体) 可以显著降低系统的总体成本。

5. 功率:电池监视器本身也是电池的负载。较低的工作电流可提高系统效率,而当汽车或设备关闭时,较低的备用电流可防止电池过度放电。
 
电池监视
表1介绍了电池监视系统的 4 种架构。每种架构都设计为自主的电池监视系统,并假定系统由 96 个电池组成,12 个电池为一组,分成 8 组 (见表 1)。每组都有一个至主 CAN 总线的 CAN 接口,而且与系统其余部分是电流隔离的。

表 1:电池监视架构比较

并联独立 CAN 模块 (图 1)

 

每个由 12 个电池组成的模块都含有一个 PC 板,板上有1个 LTC6802、1个微控制器、1个 CAN 接口和1个电流隔离变压器。系统所需的大量电池监视数据使主 CAN 总线难以应付,因此 CAN 模块必须在 CAN 子网上。CAN 子网由一个主控制器协调,该主控制器也为主 CAN 总线提供网关。


图 1 并联独立 CAN 模块


具CAN网关的并联模块(图 2)

每个由 12 节电池组成的模块都含有一个 PC 板,板上有一个 LTC6802 和一个数字隔离器。这些模块具有至控制器电路板的独立接口连接,该控制器电路板上含有1个微控制器、1个 CAN 接口和1个电流隔离变压器。微控制器协调这些模块,并为主 CAN 总线提供网关。

图 2 具 CAN 网关的并联模块的方框图

具CAN网关的单个监视模块(图 3)

在这种配置中,由 12 节电池组成的模块中没有监视和控制电路。取而代之的是,单个 PC 板含有 8 个 LTC6802 监视器 IC,每个监视器 IC 都连接至其电池模块。LTC6802 器件通过非隔离式 SPI 兼容的串行接口通信。单个微控制器通过 SPI 兼容的串行接口控制整组电池监视器,该微控制器也是至主 CAN 总线的网关。CAN 收发器和电流隔离变压器是该电池监视系统的最后两个组件。

图 3 具 CAN 网关的单个监视模块的方框图

具CAN网关的串联模块(图 4)

这种架构类似于单个监视模块,除了每个 LTC6802 都在由 12 个电池组成的模块内部的 PC 板上。8 个模块通过 LTC6802 非隔离式 SPI 兼容串行接口通信,这在电池模块之间需要连接 3 或 4 条传导电缆。单个微控制器通过底端监视器 IC 控制整组电池监视器,并作为至主 CAN 总线的网关。CAN 收发器和电流隔离变压器仍然是电池监视系统的最后两个组件。

图 4 具CAN网关的串联模块的方框图

电池监视架构选择

第一种和第二种架构一般而言比较具有挑战性,因为并行接口需要大量连接和外部隔离。为了应对这种复杂性的提高,设计师采用了独立地与每个监视器器件通信的方法。第三种 (具 CAN 网关的单个监视模块) 和第四种 (具 CAN 网关的串联模块) 架构采用了简化的方法,所受限制最少。

LTC6802 可以满足这 4 种配置的需求,为系统设计师留出了选择余地。该器件的两个变体也已开发出来,一个用于串联配置,另一个用于并联配置。

LTC6802-1 用于叠置式 SPI 接口配置。多个器件可以通过一个接口串联连接,该接口无需外部电平移位器或隔离器,就可沿着电池组来回发送数据。

LTC6802-2 允许用单个器件满足并联架构的需求。两种变体有相同的电池监视性能规格和功能。

电动汽车和大功率工业设备向电池组提出了大量要求。制造商期望用经济实惠的电池系统满足严格的可靠性要求。最新的电池监视 IC 使系统设计师能在无性能折衷的前提下,灵活地选择最佳电池组架构。
相关资讯
日本Rapidus突破2nm芯片技术,挑战台积电三星霸主地位

日本政府支持的半导体企业Rapidus于7月18日宣布,已成功试产国内首个2nm晶体管,标志着该国在先进芯片制造领域取得关键突破。这一进展是日本耗资5万亿日元(约合340亿美元)半导体复兴计划的重要里程碑,旨在重塑其在全球芯片产业链中的竞争力。

RISC-V架构突破性能瓶颈,Andes发布新一代AX66处理器IP

在2025年RISC-V中国峰会的“高性能计算分论坛”上,Andes晶心科技CEO林志明正式发布了公司最新一代64位RISC-V处理器IP——AX66。该产品基于RISC-V国际基金会最新批准的RVA23 Profile标准,专为高性能计算(HPC)、AI加速及边缘计算等场景优化,标志着RISC-V生态在高性能计算领域的进一步成熟。

1 GHz实时扫描革新EMC测试:是德科技PXE接收机技术解析

随着电子设备复杂度的提升和产品开发周期的缩短,电磁兼容性(EMC)测试已成为制造商面临的关键挑战。传统EMI测量方法效率低下,难以捕捉瞬态干扰信号,导致测试周期延长、成本增加。是德科技(Keysight Technologies)推出的新一代PXE电磁干扰(EMI)测量接收机,通过突破性的1 GHz实时无间隙扫描技术,将测试速度提升3倍,显著优化了EMC认证流程,为工程师提供了更高效、精准的测试解决方案。

亚马逊AWS部门启动战略性裁员,生成式AI推动云业务重组

全球电商及云计算巨头亚马逊近日对其核心利润引擎——亚马逊网络服务(AWS)部门实施新一轮裁员。据公司内部消息人士透露,本次调整涉及销售、市场及技术解决方案团队,受影响岗位达数百人。这是继4月影视与硬件部门优化后,亚马逊2024年内第三次公开披露的裁员计划,反映出企业在人工智能浪潮下的持续业务重塑。

圣邦微电子SGM42203Q:高性能汽车级双通道高边驱动解决方案

随着汽车电子化程度不断提高,高边驱动器(High-Side Driver)在车身控制模块(BCM)、LED照明、电机驱动等应用中发挥着关键作用。圣邦微电子(SG Micro)推出的SGM42203Q是一款专为汽车电子设计的24V双通道高边驱动器,具备模拟电流检测、高可靠性及智能保护功能,可广泛应用于电阻性、电容性和电感性负载驱动。本文将深入解析该产品的技术优势、市场竞争力及典型应用场景。