手机锂离子电池保护电路详析

发布时间:2011-11-4 阅读量:1056 来源: 我爱方案网 作者:

中心议题:
    * 锂离子电池的特点
    * 锂离子电池保护电路工作原理
解决方案:
    * 采用过充电保护
    * 采用过放电保护
    * 放电过电流保护
    * 线路短路保护

由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解(有些人可能还不知道锂电里有保护电路),下面将对锂 离子电池的特点及其保护电路工作原理进行阐述。

锂电池分为一次电池和二次电池两类,目前在手机里的备用电池因耗电小主要使用不可充电的一次锂电池,而在手机主电池因耗电量较大则使用可充电的二次电池, 即锂离子电池。

与镍镉和镍氢电池相比,锂离子电池具备以下几个优点:

1、电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V电压。

2、容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5倍。

3、荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。

4、寿命长,正常使用其循环寿命可达到500次以上。

5、没有记忆效应,在充电前不必将剩余电量放空,使用方便。

由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池 内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂 离子电池都需要一个保护电路,用于对电池的充、放电状态进行监测,并在某些条件下关断充、放电回路以防止对电池发生损害。

下图为一个典型的锂离子电池保护电路原理图。
                              

如上图所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个 MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、 过电流保护与短路保护功能,其工作原理分析如下:

1、正常状态

在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻 抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。
此状态下保护电路的消耗电流为μA级,通常小于7μA。

 


2、过充电保护

锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为 4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时, 电池的化学副反应将加剧,会导致电池损坏或出现安全问题。

在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电 压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。

而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。在控制IC检测到电池电压超过4.28V至发出关断V2信号之间, 还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。

3、过放电保护

电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池 的永久性损坏。

在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1 由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二 极管对电池进行充电。

由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

在控制IC检测到电池电压低于2.3V至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常设为100毫秒左右,以避免因干扰而 造成误判断。

4、过电流保护

由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏 或出现安全问题。

电池在对负载正常放电过程中,放电电流在经过串联的2个MOSFET时,由于MOSFET的导通阻抗,会在其两端产生一个电压,该电压值 U=I*RDS*2,RDS为单个MOSFET导通阻抗,控制IC上的“V-”脚对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路 电流大到使U>0.1V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了 放电回路,使回路中电流为零,起到过电流保护作用。

在控制IC检测到过电流发生至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常为13毫秒左右,以避免因干扰而造成误判断。

在上述控制过程中可知,其过电流检测值大小不仅取决于控制IC的控制值,还取决于MOSFET的导通阻抗,当MOSFET导通阻抗越大时,对同样的控制 IC,其过电流保护值越小。

5、短路保护

电池在对负载放电过程中,若回路电流大到使U>0.9V(该值由控制IC决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其“DO”脚 将迅速由高电压转变为零电压,使V1由导通转为关断,从而切断放电回路,起到短路保护作用。短路保护的延时时间极短,通常小于7微秒。其工作原理与过电流 保护类似,只是判断方法不同,保护延时时间也不一样。

以上详细阐述了单节锂离子电池保护电路的工作原理,上面电路中所用的控制IC为日本理光公司的R5421系列,在实际的电池保护电路中,还有许多其它类型 的控制IC,如日本精工的S-8241系列、日本MITSUMI的MM3061系列、富晶的FS312和FS313系列、类比科技的AAT8632系列等 等,其工作原理大同小异,只是在具体参数上有所差别,有些控制IC为了节省外围电路,将滤波电容和延时电容做到了芯片内部,其外围电路可以很少,如日本精 工的S-8241系列。

除了控制IC外,电路中还有一个重要元件,就是MOSFET,它在电路中起着开关的作用,由于它直接串接在电池与外部负载之间,因此它的导通阻抗对电池的 性能有影响,当选用的MOSFET较好时,其导通阻抗很小,电池包的内阻就小,带载能力也强,在放电时其消耗的电能也少。

随着科技的发展,手机的体积越做越小,而随着这种趋势,对锂离子电池的保护电路体积的要求也越来越小,在这两年已出现了将控制IC和MOSFET整合成一 颗保护IC的产品,如DIALOG公司的DA7112系列,有的厂家甚至将整个保护电路封装成一颗小尺寸的IC,如MITSUMI公司的产品。

手机的锂离子电池在损坏后,有些是保护电路出故障(尤其是进水机的电池),因此有些锂电可以拆开来修复,既环保又不浪费。

相关资讯
全球芯链共融:新质生产力驱动工业数字化转型新格局

2025年5月14日,全球半导体分销巨头大联大控股在深圳成功举办以「新质工业·引领未来」为主题的峰会,汇聚英飞凌、意法半导体、瑞芯微等16家顶尖原厂及逾500名行业精英。面对全球制造业智能化、低碳化转型浪潮,此次峰会聚焦人工智能、边缘计算、电力电子等新质生产力的技术融合,通过主论坛、分论坛及技术展区三大板块,全方位展示从芯片设计到系统集成的全产业链创新方案。中国工业增加值连续三年稳步增长(2023年4.6%、2024年5.7%、2025年一季度6.5%),印证了“新质工业时代”的全面开启。大联大中国区总裁沈维中在开幕致辞中强调,中国制造业正以技术韧性重构全球供应链,而半导体技术的全链路赋能将成为驱动产业升级的核心引擎。

体积缩小37.7%!看LM-R2S系列如何重塑工业电源格局

根据金升阳官方技术白皮书数据显示,其最新发布的LM-R2S系列机壳开关电源通过8项核心技术创新,实现了工业供电设备在功率密度、环境耐受性及能效表现的三维突破。作为LM-R2系列的迭代产品,该系列解决了传统工业电源在设备小型化与复杂工况适配性之间的矛盾,为智能制造升级提供了高可靠性的供电保障。

存储器市场回暖驱动威刚科技2025年第一季业绩显著增长

2025年第一季度,全球存储器市场迎来关键转折点。DRAM与NAND Flash现货价自2月止跌回升,带动行业库存去化加速,需求端逐步回温。威刚科技董事长陈立白指出,存储器原厂自2024年末起减产调控供给,叠加AI服务器、智能终端等新兴应用需求增长,推动市场价格走出低谷。根据TrendForce数据,尽管此前预测Q1合约价可能下跌,但实际现货市场受备货动能及库存策略影响,价格反弹超预期,成为威刚业绩增长的直接推力。

全大核架构革新旗舰体验 天玑9400e芯片深度解析

MediaTek于5月14日正式推出天玑9400e旗舰移动平台。作为天玑系列的全新力作,该芯片凭借全大核架构设计、第三代4nm制程工艺及多项创新技术,在计算性能、能效管理和AI应用领域实现突破性进展,为智能手机用户提供更卓越的游戏、影像与通信体验。

韩国半导体出口突破116亿美元:存储芯片涨价与HBM需求推高增长

根据韩国产业通商资源部5月14日发布的《2025年4月ICT进出口趋势》报告,韩国4月信息通信技术(ICT)出口额达189.2亿美元,同比增长10.8%,创下有记录以来4月份的最高值。同期贸易顺差为76.1亿美元,主要得益于半导体等高附加值产品的强劲表现。然而,对华、对美两大核心市场的出口增速显著放缓,反映出全球贸易政策不确定性的深远影响。