实用EMI噪讯对策讲座(6)——反射

发布时间:2011-11-30 阅读量:1240 来源: 我爱方案网 作者:

中心议题:
    *  反射现象
    *  特性阻抗
    *  反射的种类

本系列讲座共12篇,剩下5篇在文章最后:
实用EMI噪讯对策讲座(1)——基础物理篇
http://www.52solution.com/article/articleinfo/id/80010427
实用EMI噪讯对策讲座(2)——信号模式
http://www.52solution.com/article/articleinfo/id/80010428
实用EMI噪讯对策讲座(3)——噪讯与电洞
http://www.52solution.com/article/articleinfo/id/80010429
实用EMI噪讯对策讲座(4)——平衡
http://www.52solution.com/article/articleinfo/id/80010430
实用EMI噪讯对策讲座(5)——天线与噪讯放射
http://www.52solution.com/article/articleinfo/id/80010431
实用EMI噪讯对策讲座(6)——反射
http://www.52solution.com/article/articleinfo/id/80010432
实用EMI噪讯对策讲座(7)——失真
http://www.52solution.com/article/articleinfo/id/80010433

反射现象

所谓电流,是指电子的流动而言,直流时的电流好比是河流的水从上游朝下游流动,两者主要差异是电流必需通过传输线路才能流动。交流时的电气具备波的特性,而且是以波动方式传输,交流的流动好比是波在水面上传输,水的分子呈上下晃动并不会朝水平方向流动,不过波动却朝水平方向以一定速度流动传输(图1)。
 
图1 水浪波动特性

交流电流的电子只会在本身位置附近振动不会作直流性移动,不过电子的振动却会在传输路径中以波动方式传输(图2)。电子本身的移动方向与波的传输方向相同,若以波动观点而言在传输线路中的电气信号则与电磁波完全相同。
 
图2 交流的电子动态

在导体中移动的电子本身的速度并没有预期的快,不过波动的传输速度若与电子本身的速度比较却非常的快。在真空中传输的电磁波的速度,亦即所谓的光速大约是30万km/秒。在电线中传输的电气速度亦即信号速度比光速慢,随着周围绝缘体的材质不同,大约是真空中的50~80%,相当于20cm/ns(200m/μs)或是5ns(5μs/km)。如上所述在电线中传输的电气信号属于波动,它与池边的水波碰撞岸边引发反射一样会引发反射现象,由此可知反射主要是在传输路径的端源发生。

如图3(a)所示,通过A点的信号在传输线路B点反射,再度折返A点时必需经过一段时间,因此原信号与反射波偏离成为噪讯(图3(b)),如果信号无衰减,反射波会与原信号的强度相同,进而成为强烈的噪讯。
 
图3 反射现象
 

 

 
与上述反射现象有密切关连性,就是传输线路的特性阻抗(impedance)。如图4所示假设传输线路为无限长,此时若在输线路的一端施加交流电压使电流流动,由于传输线路无限长,阻抗等于是无限大,因此直流电流无法流动,主要原因是传输线路内还有电容(capacitance)、电感(inductance)等成份,并不是单纯阻抗就能构成传输线路,尤其对交流而言传输线路通常都具有阻抗成份。
 
图4 特性阻抗

若从传输线路的入口端观察,可以看见传输线路似乎具备一定的阻抗,该阻抗称为「传输线路特性阻抗」,该特性阻抗在各传输线路各自具有固有值。

特性阻抗内包含频率特性,传输线路的特性阻抗频率特性,高频时几乎变成一定值,如图5所示低频时随着频率的降低,特性阻抗值反而变高。一般捻合对线(twist pair cable)的阻抗大约是100Ω。
 
图5 捻合对线的特性阻抗

捻合对线经常应用在一般有线电话,所以又称为市内缆线。电话线的阻抗为600Ω,该阻抗就是一般所谓的「特性阻抗」。由图5可知在声音频率范围,电话的特性阻抗会随着缆线的直径与信号频率出现极大差异,基于使用方便性等考虑,缆线直径0.65mm,频率1kHz时,以阻抗600Ω表示电话线的声音频率范围(频宽)阻抗特性。

同轴缆线则是制作上刻意使缆线具备特定的特性阻抗,特性阻抗50Ω系列与75Ω系列两种同轴缆线,广泛应用在一般消费性电子机器。此处请读者注意印刷电路基板的图案(pattern)同样具有特性阻抗,不过一般图案的特性阻抗并非一定值,它会随着场地出现散乱分布。印刷电路基板的图案同样可以设计成拥有特定的特性阻抗,亦即「micro strip line」,由于micro strip line可以使印刷图案拥有特定的特性阻抗,虽然它能够取代同轴缆线,不过micro strip line并不具备与同轴缆线完全相同的特性。

反射的种类

虽然缆线可以连接使用,不过此时连接部位可能会产生反射,如图6所示种类相异的缆线连接时,只要特性阻抗相同就不会产生反射,特性阻抗相异时在连接点部分信号穿透其余信号则反射。
  
图6 相异特性阻抗缆线的连接
 

 

 
假设上游特性阻抗为Z1,上游特性阻抗为Z2,m为:
 
如此一来电压反射系数与电压穿透系数可用下式表示:
 
由式(1)可知特性阻抗的差越大反射也随着变大,此处假设将传输线路的端缘(传输线路的出口端)开放,接着在它的前端连接特性阻抗无限大的传输线路,由于Z2=∞,因此m=1,其结果如图7所示传输线路完全反射。

图8是透过电路仿真分析获得的结果,上述图7则是对照模拟分析实际传输波形,图中的V(IN)与V(OUT)分别是传输线路的入口与出口(OPEN),入口的最初脉冲就是信号的输入,之后的脉冲就是在出口反射折返的波形。

实际传输线路有信号衰减现象,不过图8纯粹只是模拟分析,所以可以作成0衰减,由于中途无衰减现象,因此三个信号的值完全相同,它与图7的波形主要差异有二个,分别是元信号脉冲宽度与信号衰减。元信号脉冲宽度在仿真分析,脉冲宽度比信号在传输线路往返时间更狭窄,在入口V(IN)的反射波变成其它脉冲,相较之下实际的波形,在入口端的脉冲会持续中途反射波折返。

至于信号衰减在实际波形则有信号衰减问题,出口V(OUT)端的电压是入端口V(IN)的二倍,造成该现象主要原因是输入(INPUT)传送过来的信号,与反射产生的信号重迭累计所致。
  
图7 端缘开放时                   图8 端缘短路时

在模拟分析中单纯将反射理想化,现实的波形则参杂反射以外各种因素,其结果与模拟分析的波形截然不同。此处为正确进行模拟分析,因此刻意将各种要因加入仿真分析的模式内。反过来说模拟分析却能够获得实际实验无法取得纯理论现象,例如信号延迟为15μs,传输线路长度为3km时,由于传输线路相当长因此信号会衰减,然而在模拟分析上却可以获得0信号衰减时的现象。

如果使出口端V(OUT)短路,出口端的电压当然是0,此时在出口端会发生大小相同极性相反的反射现象,它会与输入相加其结果造成电压变成0。假设式(1)的Z2
如上所述阻抗相异的境界会发生反射部份折射穿透前进(图9),这种现象并非局限在光线,信号信号也有相同现象,两者唯一差异是光线的场合不是阻抗,而是「折射率」。此外,在反射光有所谓的「偏光现象」,一般光线会在任何方向振动,只在特定方向振动的光线称为「偏光」,如图10所示偏光方向成90°相异的两片偏光板会遮蔽光线。如图10所示偏斜反射同样会发生偏光,因此可以利用属于偏光的反射光,消除有害的反射光。
 
图9 反射的发生机图
 

 


 
图10 偏光与反射光的比较
 
图11利用偏光消除无益的反射光

本系列讲座共12篇,剩下7篇在文章头部:
实用EMI噪讯对策讲座(8)——遮蔽Shield
http://www.52solution.com/article/articleinfo/id/80010434
实用EMI噪讯对策讲座(9)——Ground与电源
http://www.52solution.com/article/articleinfo/id/80010436
实用EMI噪讯对策讲座(10)——电源的噪讯
http://www.52solution.com/article/articleinfo/id/80010437
实用EMI噪讯对策讲座(11)——DC电源与Ground
http://www.52solution.com/article/articleinfo/id/80010438
实用EMI噪讯对策讲座(12)——筐体与筐体内的导线
http://www.52solution.com/article/articleinfo/id/80010439

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"