发布时间:2011-12-2 阅读量:1051 来源: 我爱方案网 作者:
中心议题:
* 智能照明控制的基本理论和方法
解决方案:
* 提出利用图像处理技术来自动检测照度
1 前言
智能照明控制是在“以人为本”作为前提的条件下, 对照明器具实行自动控制(包括: 照度的自动调节、灯的自动开关以及局部区域照度的控制)的行为。它应该符合两个相对独立的要求:
(1)给人提供一个舒适的工作环境, 以保证工作人员具有较高的工作效率;
(2) 通过合理的管理以节约能源和降低运行费用。具体说来, 上班时间, 智能照明控制系统自动调节光照度于最合适的水平。在天晴时, 灯光自动调暗; 在天阴时, 灯光自动调亮。
同时, 利用红外及微波传感器探测是否有人工作,当无人工作时, 自动转入“夜间”工作状态。其原理框图如图1 所示。为了使工作人员有一个舒适的工作环境, 使用调光电子镇流器调光, 以减少工作人员长期工作而引起眼睛的疲劳感。随着时间的推移, 灯具的老化和房间墙面反射率不断衰减而引起照度下降, 而设计时的照度值高于标准照度值。这样, 在使用初期时, 既浪费能源, 又缩短灯具的寿命。为了保持照度维持基本不变而节约能源, 因此,可以通过智能控制来实现。但是, 该智能照明控制在工程施工中工作量大, 要求安装较多的传感器,特别是光传感器要分布在不同的地方。本文设计了一种基于图像处理技术的智能照明控制系统, 以解决上述问题。
2 基于图像处理技术的智能照明控制系统
图像处理技术是始于20 世纪50 年代, 1964 年美国喷射推进实验使用计算机对太空船送回的大批月球照片处理后得到了清晰逼真的图像。70 年代初, 由于大量的研究和应用, 图像处理技术已形成较完善的学科体系。数字图像信息可看成是一个二维数组f ( i , j) , 对图像各象素进行处理时, 输入图像F 上某象素的灰度值为f ( i , j) , 进行某种P 处理, 得到输出图像上该象素的灰度值为g ( i ,j) , 即:
g ( i , j) = p ( f ( i , j) )因此, 如果将某一区域内的光照度大小的分布, 通过CCD 传感器变成一幅图像的象素灰度值, 那么,就可以将该区域的光照度大小的分布输出为一个待处理的二维数组f ( i , j) , 满足如下关系:
f ( i , j) = p ( z ( x , y) )式中, z ( x , y) 为区域内的光照度分布函数;f ( i , j) 为该区域内的象素灰度值形成的数组元素;p ( z) 为变换关系。
假设该数组的元素为: aij , 表示某矩形区域单位面积的照度值。并假设该数组为: m ×n (即m行n 列) 。f ( i , j) 称为照度矩阵:
可知: 该区域的平均照度为:
当该区域的平均照度值处在所要求的照度值范围内时, 执行机构维持现状不变; 否则该区域的平均照度值不满足设计要求, 通过执行机构将该区域的照度值加大或减小, 以满足设计需要。
基于图像处理技术的智能照明控制系统的框图如图2 所示。其工作原理是:
CCD 传感器将某一区域的照度值传送给图像处理控制器, 控制器将获取的数据进行运算。即计算区域的平均照度, 根据使用要求判别某象素值或某局部区域象素平均值是否在要求的域值内, 如果是在要求的域值内, 则认为照度合适; 反之, 说明照度过大或过小。控制器根据需要控制执行机构进行调光, 达到合适的照度要求为止。判断是否有人走动的方法是: 将过道(人走动所经过的) 区域的图像分割出来, 该区域的象素值在没有人走动时基本不变或变化很小。当有人走动时, 该区域的象素值变化较大。假设t0 时刻没有人走动时, 该区域象素值分布为f t0 ( x , y) , 经过δt (如: 1 S ) 时间后,该区域的象素值分布为f t1 ( x , y) , 计算差值: δf( x , y) = f t1 ( x , y) - f t0 ( x , y) 。如果δf ( x ,y) 内各象素值的绝对值之和较大, 可以认为是有人在走动; 如果δf ( x , y) 内各象素值的绝对值之和较小或为零时, 则可认为没有人走动。从而控制灯光的有无。图像处理控制器的原理框图如图3 所示。
显然, 处理器处理象素的速度要尽可能地快。
因此, 为了提高处理速度, 在进行图像处理计算时,不是一个一个象素的处理, 而是采用先将图像进行分割成更小块的图像进行处理的方法进行。由于DSP 技术在数字图像的处理方面有其独特的优势,所以采用DSP 技术进行数字图像的滤波以改善图像的信噪比。此外, 相邻象素之间具有一定的相关性,利用图像相邻象素之间的相关系数来提取亮域和暗域之间的边界。提高控制的准确度, 大大地延长了灯具的使用寿命。
基于图像处理技术的智能照明系统由于采用了CCD 摄相传感, 在工程布线以及传感安装上, 大大降低了工作量, 可靠性高。采用光传感器必须要求在各控制点安装传感器, 布线极为复杂, 可靠性不高。
基于图像处理的程序流程图如图4 所示。初始化系统后, 经过采集图像数据, 将采集来的数据进行计算: 先进行图像分割, 然后进行图像特征提取,区分亮区和暗区, 计算平均照度。判别照度值是否符合要求: 如果照度值符合要求, 重复采样图像数据; 如果照度值不符合要求, 就输出控制信号来调节灯的亮度, 之后, 重复采样图像数据, 进行下一个循环。
3 结论
将图像处理技术应用于智能照明控制为智能照明控制设计提供了一条有效的途径。本文在理论上进行了探讨, 并在图像处理上做了一些基础工作。对于智能照明的照度与象素之间的关系以及更简洁的算法还有待今后进一步研究。
2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。
2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。
2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。
2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。
2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"