解析新型BOOST-BUCK变换器

发布时间:2011-12-9 阅读量:1531 来源: 我爱方案网 作者:

中心议题:
    *  提出一种新型的BOOST-BUCK变换器
    *  从理论分析,仿真和实验验证该变换器的实用性

Ⅰ 引言
  
目前,功率因数校正问题是许多电器设备都需要解决的问题。对此,人们提出了许多的电路拓扑和控制方案来解决它。其中运用较为广泛的是利用BOOST型变换器来做功率因数校正。这是因为BOOST变换器具有许多其他电路拓扑所不具有的优点,例如输入电流连续,控制简单等。但是BOOST变换器的输出电压必须要比输入电压高,这使得在许多场合中需要再增加一级直流变换器来调整其输出电压,例如BUCK变换器。电路如图1所示,造成了电路成本高,驱动复杂等缺点。对此本文提出了一种新型的BOOST-BUCK电路拓扑,其电路结构如图2所示。该变换器具有BOOST型变换器的大多数的优点,同时还具有输出电压可调范围大,输出电流连续等优点。比较图1和图2,我们可以看出BOOST-BUCK变换器是由BOOST变换器加BUCK变换器集成而成的,通过共用功率MOS管Ms来实现功率因数校正和输出电压的调节的。
  
当利用BOOST变换器做功率因数校正时存在两种主要方法,利用乘法器方法和电压跟随方法。相对于前一种方法,后一种方法仅需要一个开环控制来保持恒定的占空比。当BOOST电路工作在恒占空比的DCM状态就可以实现很高的功率因数。输入电流连续并且近似为正弦波,而且输入电流连续可以进一步减小输入的EMI滤波器。本文采用恒占空比方法来实现功率因数校正。
  
在稳定状态,功率MOS管工作在固定的频率和固定的脉宽。相对于BOOST变换器,其工作于DCM状态来实现输入的高功率因数;而BUCK变换器则随着负载的变化或工作在CCM或DCM状态。在一个开关周期内,输入电源相当于一个直流电源,为了分析的方便,我们把图2简化一下,如图3所示。
 
假设该变换器已工作在稳定状态。对应与图4,该变换器的一个开关周期内的各个工作模式分析如下:
  
模式(a)t0-t1:在t0时刻,功率MOS管导通。相对于BOOST变换器而言,二极管D1反向截止;电感电流iL1 流经Vs, L1, D3, Ms返回Vs。而对于BUCK变换器,二极管D1反向截止;电感电流iL2 流经C1, L2, C2&R2, D2, Ms返回C1。两电感均存储能量。
  
模式(b)t1-t2;在t1时刻,功率MOS管关断。相对于BOOST变换器而言,电感电流iL1通过二极管D1续流;电感电流iL1 流经Vs, L1, D3, D1,C1返回Vs。而对于BUCK变换器,电感电流iL2 也通过二极管D1续流,电感电流iL2 流经L2, C2&R2, D2, D1返回L2。两电感均释放能量。
  
模式(c)t2-t3;在t2时刻,功率MOS管保持关断状态。电感电流iL1降为零,BOOST变换器暂停工作。BUCK变换器仍然工作在续流状态。
  
模式(d)t3-t4;在t3时刻,功率MOS管保持关断状态。电感电流iL2 也降为零。电容C2提供能量给负载。
  
图5(a)显示该变换器工作时的一个开关周期内的关键波形。在设计过程中,BOOST变换器的电感L1必须被设计工作在断续状态。如图5(b)所示,输入电流的峰值会自动跟随输入电压,从而实现功率因数校正。
 

 




  
当要实现功率因数校正时,本变换器采用恒频率恒占空比的控制方法来实现功率因数校正。假设输入的交流电Vin=Vmsinwt,
  
则输入电流的峰值:
           (1)
  
(1)式中T为开关周期,D为占空比,Ton为开关管的导通时间。从图5(b)可以看出,峰值电流跟随着kVin的包络线。
  
当功率开关管关断后,电感向BOOST的输出电容充电,电流下降。电流下降间
   (2)
  
(2)式中Vc1为BOOST的输出电容上的电压。
  
所以变换器的输入电流

由(6)式可以确定输入电感L1。
 

 

  
Ⅲ 仿真及实验结果
  
仿真所采用的主电路如图2所示,参数设计如下:交流输入为正弦波,幅值Vin=310V,频率f=50hz;BOOST电感L1=2mH,BUCK电感L2=2mH;BOOST电容C1=470u,BUCK电容C2=100u;功率开关管用IRF840;二极管采用MUR840。输入滤波器电感为2mH,电容为50nf。
  
当输出Vout=86V时,负载R=200 欧姆。输入电压、输入电流、输出电压的波形如图6所示。
  
一个实验电路被用于验证所用电路的实用性。实验参数如下:开关周期为33Khz;输入交流120V;输入滤波器参数为电感2mH,电容0.33uf;BOOST电感L1=1.3Mh,电容C1=470uf;BUCK电感L2=2.1mH,电容C2=1uf;功率开关管为IRF840;二极管为HER107。驱动采用UC3844进行控制。
  
当输出电压Vout=85V时,测得输入电压电流波形如图8所示。

图8 输入电压、输入电流的波形
  
当输出电压Vout=225V时,测得输入电压电流波形如图9所示。

图9 输入电压、输入电流的波形
 

 

  
从图8、图9中可以看出该变换器的输出电压可以高于或低于输入电压,且具有较高的功率因数。

Ⅳ 结论
  
本文提出并分析了一种新型的BOOST-BUCK变换器。该变换器具有连续的输入电流和输出电流,且其输出电压可调节范围大。该变换器可用于做直流变换器,也可以用于做功率因数校正。理论分析和实验均验证了该变换器的实用性。

相关资讯
行业观察:三星押注HBM3E量产抢占AI芯片供应链先机

随着人工智能算力需求爆发式增长,高带宽内存(HBM)技术成为全球半导体巨头的必争之地。据韩国权威科技媒体ZDNet Korea披露,三星电子于2025年2月启动12层堆叠HBM3E内存的量产计划,试图通过超前布局争夺英伟达的AI芯片订单。然而,由于该产品尚未通过英伟达的质量认证,三星当前面临库存积压与市场窗口期缩短的双重挑战。

中国智能手机市场2025年Q1深度分析:复苏动能释放,双线竞争格局显现

2025年第一季度,中国智能手机市场延续了自2024年以来的复苏态势,出货量同比增长9%至6870万部,连续五个季度实现正增长。这一增长得益于多重因素:

工业4.0核心引擎:HPM5E00如何破解高实时性与成本控制双重难题?

随着工业控制系统向智能化、高集成化方向演进,国产MCU在实时通信、算力效率及成本控制等领域面临严峻挑战。先楫半导体推出的HPM5E00系列,凭借480MHz主频、EtherCAT协议深度集成及运动控制优化设计,成为工业自动化领域国产替代的标杆产品.该系列不仅延续了HPM6E00的高算力基因,更通过低功耗架构与紧凑封装实现三大技术升级,为工控、机器人等场景提供全新解决方案。

技术赋能农业数字化转型:贸泽电子发布智慧农业全景解决方案

在全球人口突破85亿的背景下,粮食安全与农业可持续发展已成为各国战略重点。作为全球领先的半导体与电子元器件供应商,贸泽电子近日推出农业资源中心,系统性整合物联网(IoT)、人工智能与卫星遥感技术,为现代农业提供从数据采集到决策优化的全链条技术支持。

国产替代加速下的竞争格局:VEML4031X00与TI/Intersil的全面技术对标

2025年5月7日,威世科技(Vishay Intertechnology)宣布推出全球首款符合AEC-Q100标准的矩形环境光传感器VEML4031X00,其采用4.38 mm×1.45 mm超薄表贴封装,厚度仅0.6 mm,专为汽车无边框中控显示器等空间受限场景设计。该产品集成环境光(ALS)与高灵敏度红外光电二极管,光谱响应范围0 lx至172,000 lx,解决了传统传感器在深色盖玻片后灵敏度不足的行业痛点。