详细解析全自动洗衣机原理及电路图

发布时间:2011-12-27 阅读量:5482 来源: 我爱方案网 作者:

中心议题:
    *  自动洗衣机的洗衣程序设计
    *  洗衣机控制器的硬件组成原理
解决方案:
    *  程序:洗涤—脱水—脱水—漂洗—脱水—漂洗—脱水
    *  硬件:单片机Z86C09、电源、过零检测、键盘和显示、双向晶闸管触发电路

全自动洗衣机就是将洗衣的全过程(泡浸-洗涤-漂洗-脱水)预先设定好N个程序,洗衣时选择其中一个程序,打开水龙头和启动洗衣机开关后洗衣的全过程就会自动完成,洗衣完成时由蜂鸣器发出响声。

全自动洗衣机由洗衣系统和控制电路组成。其控制电路分为机械和电脑型,电脑型控制电路是以单片机作为控制电路的核心。图1给出单片机Z86C09组成的全自动洗衣机的控制电路。

Ⅰ.自动洗衣机的洗衣程序
洗衣机面板上有4个按钮K1、K2、K5和K6。
K1用于水流选择,分两档:普通水流与柔和水流;
K2用于洗衣周期选择,可以选择洗涤、漂洗和脱水三个过程;
K5是暂停开关;
K6是洗衣程序选择键。洗衣程序分为标准程序和经济程序。

洗衣机的标准洗衣程序是:洗涤——脱水——脱水——漂洗——脱水——漂洗——脱水。经济洗衣程序少一次漂洗和脱水过程。

1.涤过程
通电后,洗衣机进入暂停状态,以便放好衣物。若不选择洗衣周期,则洗衣机从洗涤过程开始。当按暂停开关键K5时,进入洗涤过程。首先进水阀FV通电,打开 进水开关,向洗衣杨供水;当到达预定水位时,水位开关K4接通,进水阀断电关闭,停止进水;电机MO接通电源,带动波轮旋转,形成洗衣水流。电机MO是一 个正反转电机,可以形成往返水流,有利于洗涤衣物。

2.脱水过程
洗涤或漂洗过程结束后,电机MO停止转动,排水阀MG通电,开始排水。排水阀动作时,带动离合器动作,使电机可以带动内桶转动。当水位低到一定值时,水位开关K4断开,再经过一段时间后,电机开始正转,带动内桶高速旋转,甩干衣物。
3.漂洗过程
与洗涤过程操作相同,只是时间短一些。
全部洗衣工作完成后,由蜂鸣器发出音响,表示衣物已洗干净。

Ⅱ.洗衣机控制器的硬件组成原理
洗衣机控制器由单片机Z86C09作为控制器的核心所构成,该控制器具有以下特点:
(1)具有较强的抗干扰能力,当受到外部强干扰,程序出错时,可以自动使系统复位重新执行程序。
(2)采用无噪声、无电磁干扰的双向晶闸管作为控制元件,控制电磁阀和电机。
(3)具有欠压和过压保护,欠压时,控制器不工作;超压时,保护电路起作用。
(4)具有瞬间掉电保护功能,电源短时间停电后,电压恢复时,能够维持原运行程序的工作状态并继续完成洗衣程序。
(5)各种操作和洗衣机的运行状态均用LED显示。

下面分别介绍各部分的特点及组成原理。
1.单片机Z86C09
Z86C09是Z8系列单片机中最简单的一种,成本较低。采用COMS结构,具有耗电少、抗干扰力强和工作电压宽等特点,可在2.5~5.5V的电压范围 内工作。Z86C09有14条I/O线,P2.0~P2.7是双向I/O口,可以按位设置输入或输出。P3口中P3.1~3.3规定为输入口,可作为输入 端或中断请求端。P3.4~P3.6规定为输出口。Z86C09内部含有2个多功能定时/计数器,2K字节的ROM和144字节的寄存器阵列。

2.电源电路部分
控制器的电源由变压器B、整流二极管D14~D19、滤波电容C1和稳压集成电路7806组成。7806输出的电压分三路分别用于晶闸管触发,提供键盘输 入和LED显示,以及提供单片机的电源。后两路各经过一个二极管和一个电容,当7806的输出电压下降时,还可以依靠电容保持的能量,维持电路再工作一段 时间。
晶体管T11、T10和稳压管DW组成欠压保护电路。当电源电压不足,T11的基极电压小于3.9V时,T11截止,T10也截止。Z86C09的 P3.1端没有电压,常为低电平。T12截止,造成T5~T9的发射极均悬空,因此T5~T9截止,不受Z86C09控制。这时,虽然Z86C09能够正 常工作,但外围控制元件全部关断,洗衣机不工作。单片机的P3.1端输入判别欠压保护电路工作状态的信号,只有当电压正常后,单片机才开始执行洗衣程序。
当电源电压超过使用电压时,压敏电阻MR的阻值会突然变小,使电压不能超过保护电压值,当过压时间较长时,则会烧断保险丝RD。

 


3.过零检测电路
过零检测电路由晶体管T14,变压器B和二极管D17~D19组成。D17起隔离作用,在电压为零时,脉动电压为零,T14截止。由于T14的集电极电阻 接到T10的集电极,只有在T10导通,即电源电压正常,T14才能在电源电压过零时输出高电平。Z86C09的P3.1端检测过零信号。

4.键盘和显示电路
键盘由K1~K6组成,其中K3、K4是检测开关,按键状态的检测采用扫描方法,由单片机的P3.4~P3.6输出扫描信号,使晶体管T1~T3轮流导 通,T1~T3输出的高电平通过二极管D1~D6后扫描每个键。6个键分为两组,按键信号由P3.2和P3.3输入。P3.2和P3.3常态为低电平,当 按下某一键,并且高电平扫描到这个键时,P3.2或P3.3输入才变为高电平。Z86C09检测到这个高电平,再根据当前扫描到哪一位,即可判别出哪个键 按下,D1~D6的作用是防止多个键同时按下时,对三条扫描线产生的短路。
显示电路由LED1~LED7组成。显示方式采用动态扫描方式,列扫帚信号线与行扫帚线共用,行显示信号直接由Z86C09的P2.4~P2.6驱动。由 于LED要求的亮度不,所以驱动电流不大,约9mA。每个LED显示的时间是总的显示时间的1/3,平均电流约为3mA。

5.双向晶闸管触发电路
双向晶闸管采用直流触发,晶闸管的门极由晶体管T5~T8控制,晶体管导通时,触发双向晶闸管导通,第Ⅱ~Ⅲ象限触发,T5~T8的集电极电阻用于限流。 由于1A和3A的双向晶闸管所需要的触发电流较小,容易受外界的干扰。为了提高系统的抗干扰能力,在1A和3A的双向晶闸管触发回路中各并联一个 0.01uF的电容,抑制瞬时的干扰信号。两个8A的双向晶闸管用于控制电机MO正转和反转。这两个晶闸管在任何时候最多只允许一个导通,如果两个同时导 通,则会损坏晶闸管。两个8A双向晶闸管的两个主电极上并联一个100Ω的电阻和0.01uF的电容组成阻容回路,用来吸收双向晶闸管两主电极之间的瞬时 电压脉冲,保护双向晶闸管。

附:文中的单片机也可采用AT89S51等来构成。


相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。