PSR原边反馈开关电源EMC设计技巧

发布时间:2012-02-13 阅读量:2330 来源: 发布人:

中心议题:
    *  PSR原边反馈开关电源EMC设计技巧




PCB LAYOUT注意点:

大家都知道,EMC对地线走线毕竟有讲究,针对PSR的初级地线,可以分为4个地线,如图中所标示的三角地符号。

这4个地线需采用“一点接地”的布局。

1. C8的地线为电源输入第。

2. R5的地为功率地。

3. C2的地为小信号地。

4. 变压器PIN3的地为屏蔽地。

这4个地的交接点为C8的负端,即:

输入电压经整流桥后过C1到C8地,

R5和变压器PIN3的地分别采用单独连线直接引致C8负端相连,连线尽量短;R5地线因考虑到压降和干扰应尽量宽些.

C5,R10,U1 PIN7和PIN8地线汇集致C2负端再连接于C8负端。

若为双面板,以上4条地线尽量不要采用过孔连接,不得以可以采用多个过孔阵列以减小过孔压降。

以上地线布局恰当,产品的共模干扰会很小。

因PSR线路负载时工作在PFM状态下的DCM模式,DI/DT的增大和频率的提升,所以较难处理的是传导150K~5M差模干扰.

 


就依图从左到右针对有影响EMC的元件进行逐个分析。

1. 保险丝

将保险丝换用保险电阻理论上来讲对产品效率是有负面影响的,但实际表现并不明显,所以保险丝可以采用10/1W的保险电阻来降低150K附近的差模干扰,对通过5级能耗并无太大影响,且成本也有所降低。

2. C1,L2,C8

PSR工作在DCM模式,相对而言其输入峰值电流会大很多,所以输入滤波很重要。

峰值电流的增大会导致低压输入时母线电压较低,且C8的温升也会增加;为了提高母线电压和降低C8的温升,需提高C1的容量和使用LOW ESR的C1和C8。

因为提高C1的容量后,C1和C8的工作电压会上升,在输出功率不变的情况下,输入的峰值电流就会降低。

因L2的作用,实际表现为增加C1的容量比增加C8的容量抑制EMC会更有效。

一般取C1为6.8uF,C8为4.7uF效果较好,若受空间限制,采用8.2u与3.3u也比采用2个2.7u的EMC抑制效果好。

L2一般从成本考虑采用色环电感,因色环电感的功率有限,电感量太大会严重影响效率,一般取330u~2mH,2mH是效率影响开始变得明显,330u对差模干扰的作用不够分量,为了使效率影响最低且对差模干扰抑制较佳,建议采用1mH。

因为“一点接地”的布局汇集点在C8的负端,在C8负端输入电流的方向是经过C1和BD1流回输入端,根据传导测试的原理,这样产生消极影响,所以需在C1与C8的地线上作处理,有空间的可以再中间增加磁珠跳线,空间受限可以采用PCB layout曲线来实现,虽然效果会弱些,但相比直线连接会改善不少。

3. R6,D2,R2,C4

RCD吸收对EMC的影响大家都应该已经了解,这里主要说下R6与D2对EMC的影响。

R6的加入和D2采用恢复时间较慢的1N4007对空间辐射有一定的负作用,但对传导有益。

所以在整改EMC时此处的修改对空间辐射与传导的取舍还得引起注意。

4. R5

R5既为电流检测点也是限功率设置点。

所以R5的取值会影响峰值电流也会影响OPP保护点。

建议在OPP满足的情况下尽量取大些。

一般不低于2R,建议取2.2R。

5. R4,R10,D3,R3,C2

在前部分有提到VCC电压的升高对EMC有恶性影响。

因IC内部的检测有采用积分电路,所以当VCC电压设置过高,就需要更长的积分时间,在周期不变的情况下,TON的时间就会增加,输出功率不变的情况下MOS的峰值电流就会增加,在RCD和D4的吸收R7,C11上的峰值都会增加,且D3,R3,C2也对VCC有下拉和吸收作用,会使输出电压的过冲加剧,同时影响延时检测的开启时间。

这一系列的变化对EMC的影响是不可忽视的。

根据经验,结合变压器漏感考虑,VCC电压在满载事最大值不宜超过19V,所以为使空载时VCC不至于太低导致荡机,建议VCC电压设计在15V,变压器漏感最大不宜超过15%.

6. C5

C5是IC内部延时检测补偿设置端。

C5的取值大了会导致电压检测的周期加长,小了会导致电压检测的周期变短。

检测周期的变化会影响电压的采样率,也就会影响整个产品各处的电流纹波,对EMC也会造成一定影响,一般选取0.01~0.1uF

7. C3,C7

前面有提到C3和C7的容量取值对输出电压过冲的抑制作用和维持产品的稳定性。

但C3,C7的容量也不是越大越好,他会对EMC起消极作用。

C3,C7容量的加大同样会导致上面第5点讲到的峰值电流加大,所以不能盲目选择。

相关资讯
AI引爆芯片扩产潮:2028年全球12英寸晶圆月产能将破1100万片

国际半导体产业协会(SEMI)最新报告指出,生成式AI需求的爆发正推动全球芯片制造产能加速扩张。预计至2028年,全球12英寸晶圆月产能将达1,110万片,2024-2028年复合增长率达7%。其中,7nm及以下先进制程产能增速尤为显著,将从2024年的每月85万片增至2028年的140万片,年复合增长率14%(行业平均的2倍),占全球总产能比例提升至12.6%。

高通双轨代工战略落地,三星2nm制程首获旗舰芯片订单

据供应链消息确认,高通新一代旗舰芯片骁龙8 Elite Gen 2(代号SM8850)将首次采用双轨代工策略:台积电负责基于N3P(3nm增强版)工艺的通用版本,供应主流安卓厂商;而三星则承接其2nm工艺(SF2)专属版本,专供2026年三星Galaxy S26系列旗舰机。此举标志着高通打破台积电独家代工依赖,三星先进制程首次打入头部客户供应链。

美光2025Q3财报:HBM驱动创纪录营收,技术领先加速市占扩张

在AI算力需求爆发性增长的浪潮下,存储巨头美光科技交出超预期答卷。其2025财年第三季度营收达93亿美元,创历史新高,其中高带宽内存(HBM)业务以环比50%的增速成为核心引擎。凭借全球首款12层堆叠HBM3E的量产突破,美光不仅获得AMD、英伟达等头部客户订单,更计划在2025年末将HBM市占率提升至24%,直逼行业双寡头。随着下一代HBM4基于1β制程的性能优势验证完成,一场由技术迭代驱动的存储市场格局重构已然开启。

对标TI TAS6424!HFDA90D以DAM诊断功能破局车载音频安全设计

随着汽车智能化升级,高保真低延迟高集成度的音频系统成为智能座舱的核心需求。意法半导体(ST)推出的HFDA80D和HFDA90D车规级D类音频功放,以2MHz高频开关技术数字输入接口及先进诊断功能,为车载音频设计带来突破性解决方案。

村田量产全球首款0805尺寸10μF/50V车规MLCC,突破车载电路小型化瓶颈

随着汽车智能化电动化进程加速,自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键技术模块已成为现代车辆标配。这些系统依赖于大量高性能电子控制单元(ECU)和传感器,导致车内电子元件数量激增。作为电路稳压滤波的核心元件,多层片式陶瓷电容器(MLCC)的需求随之水涨船高,尤其是在集成电路(IC)周边,对大容量电容的需求尤为迫切。然而,有限的电路板空间与日益增长的元件数量及性能要求形成了尖锐矛盾,元件的高性能化与小型化成为行业亟待攻克的关键难题。