全数字控制可控硅调光LED驱动器设计

发布时间:2012-02-29 阅读量:1488 来源: 我爱方案网 作者:

中心议题:
    *  数字控制的可控硅调光LED驱动器
解决方案:
    *  开关型变换器驱动
    *  采用PWM调光方法


当前,随着节能理念在照明领域的深入,出现了用led和节能灯直接替代原光源产品中由可控硅调光器调光的白炽灯和卤素灯。可控硅调光器通过斩切交流信号实现白炽灯和卤素灯调光,主要有前向斩波和后向斩波两种。由于白炽灯和卤素灯是电阻性负载,应用可控硅实现调光是很便利的一种解决方案。但当LED和节能灯使用原有可控硅调光器进行调光时,会面临很多问题。首先,LED和节能灯都是非线性高频负载,但可控硅的开关特性不适合这种应用;另外,目前市场上有多种可控硅调光器,而能满足全部调光器特性的LED驱动器存在很多问题。为此,本文设计了一种数字控制的可控硅调光LED驱动器。

1 系统结构框图


本设计中HBLED由开关型变换器驱动,采用PWM调光方法,LED驱动器连接可控硅调光器,如图1所示。可控硅斩波后经整流到达flyback变压器,从而把能量传递到副边给DC-DC供电。副边MCU初始化后,进行恒流和保护等参数设置,并通过辅助绕组和片内比较器检测可控硅的导通角,实现恒流、调光和保护等功能。为使可控硅可靠导通,在整流桥后接入了稳定可控硅导通电路。系统具有以下功能:(1)保证可控硅调光器可靠地导通;(2)功率因数在0.95以上;(3)驱动器效率在72%以上;(4)LED具有恒流功能;(5)具有可控硅调光功能(1%~100%);(6)各种保护功能。



2 驱动器设计

2.1 变压器设计
工作频率、输入/输出电压、输入/输出功率、输入峰值电流等参数会影响变压器运行,从而造成可控硅的导通和关断。为保证可控硅调光器正常、可靠地导通,合理设计变压器非常关键。此外,优化变压器的尺寸、材料、磁芯等参数可以提高变压器的效率。

2.1.1 计算初级电感
为了保证最优的初级电感,能接受的最小占空比计算如下:



输出功率的范围决定了适合的磁芯类型,本应用选用了E25/13/7型磁芯。

 


2.1.3 初级绕组匝数
初级绕组需要在匝数和气隙大小两者之间取得平衡,以保证应用中变压器不饱和。考虑本应用的特殊要求,可依据下式确定匝数。



2.2 假负载电路

为消除高频信号对可控硅的干扰,保证可控硅具有一定的导通电流,设计了稳定可控硅导通电路,如图2所示。当由于高频非线性负载电流不够而引起导通不完全时,假负载可以及时接入。当Q3导通时,导入大负载保证可控硅导通。当可控硅导通后,控制Q2导通关闭Q3,切换到小负载来维持可控硅导通所需要的维持电流,这样既保证了可控硅导通的维持电流,又尽可能地降低了假负载的损耗。



2.3 导通角检测
为了使驱动器稳定工作,快速、可靠地检测可控硅的导通角非常重要。本驱动器通过软硬件结合的方式来实现导通角检测,把整流电路后的滤波大电容去掉,使得整个驱动器会有0.9以上的功率因数,使整流后的电压波形保持馒头波波形,由此反激变换器辅助绕组上的波形也保持相应的馒头波波形,从而可以利用MCU内置的比较器进行电压比较。比较器输出的上升沿触发MCU片内定时器进行计时,其下降沿则使得定时器停止计时,然后程序对计时结果进行软件滤波处理,再转化为对应的PWM调光信号,最终快速有效地判断出可控硅的导通角并实现调光功能。
   
 


2.4 程序架构
uPD78F075x系列MCU集成了硬件比较器,并且其定时器具有和比较器输出的联动功能,从而实现变频或定频变占空比的类似硬件控制,为LED恒流控制的实现提供了便利。联动功能具体实现如下:(1)通过配置定时器使其具有PWM输出功能,并且其PWM波的输出是根据比较器的输出结果来改变PWM的频率或占空比。(2)可通过设置MCU中的两个定时器进行逻辑关联,使得其中一个定时器输出的PWM受另一个定时器的输出的控制,这样就无需另外单独输出PWM进行调光,可以利用此功能在MCU内部控制主PWM而使得整个DC-DC部分工作或不工作实现数字调光功能。本系统充分利用以上两项功能,通过软硬件对导通角的快速、可靠地判断,再将导通角信号转化为调光信号实现可控硅调光功能。图3、图4分别为主程序流程图和导通角判断的程序流程图。





3 实验结果

为验证驱动器实际运行效果,研制样机进行了实验研究。部分实验波形如图5~图8所示。从波形图可以看出,可控硅能很好地导通,斩波后的信号非常干净,调光信号和可控硅的斩波信号也有很好的对应。当LED工作时,加在LED的电压信号迅速上升并稳定在一定范围内,起到了恒流和调光作用。

本文设计了一种可通过可控硅调光器进行调光的LED驱动系统,通过对变压器进行优化设计,以软硬件结合的方式进行可控硅导通角的实时判断并快速、稳定地转化为调光信号,很好地保证了可控硅调光器的可靠工作,从而实现了可控硅对LED驱动器的全数字调光。


相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"