Cypress PSoC CY8C21x23血压监测方案能替代多种基于MCU的传统系统元件

发布时间:2012-05-24 阅读量:1207 来源: 我爱方案网 作者:

中心议题:
    *  Cypress PSoC CY8C21x23血压监测方案

Cypress 公司的PSoC CY8C21x23是集成了可配置的模拟和数字外设功能,存储器和微控制器,能替代多种基于MCU的传统系统的元件.M8C处理器采用功能强大的哈佛架构,速度高达24MHz,工作电压2.4V-5.25V.本文介绍PSoC CY8C21x23主要特性,方框图以及采用PSoC 的血压监测仪所用主要元件,原理和方框图.

Blood Pressure Monitor with PsoC

CY8C21123, CY8C21223, CY8C21323 : PSoC® Programmable System-on-Chip PSoC® is a true programmable embedded system-on-chip integrating configurable analog and digital peripheral functions, memory and a microcontroller on a single chip. The PSoC family consists of many programmable system-on-chip controller devices. These devices are designed to replace multiple traditional MCU-based system components with a low cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture consists of four main areas: the Core, the System Resources, the Digital System, and the Analog System. Configurable global bus resources allow the combining of all device resources into a complete custom system. Each PSoC device includes four digital blocks. Depending on the PSoC package, up to two analog comparators and up to 16 General Purpose I/O (GPIO) are also included. The GPIO provide access to the global digital and analog interconnects.

CY8C21x23主要特性:

■ Powerful Harvard Architecture Processor:

❐ M8C Processor Speeds up to 24 MHz

❐ Low Power at High Speed

❐ 2.4V to 5.25V Operating Voltage

❐ Operating Voltages down to 1.0V using On-Chip Switch Mode Pump (SMP)

❐ Industrial Temperature Range: -40°C to +85°C

■ Advanced Peripherals (PSoC® Blocks):

❐ Four Analog Type “E” PSoC Blocks Provide:

• Two Comparators with DAC References

• Single or Dual 10-Bit 8:1 ADC

❐ Four Digital PSoC Blocks Provide:

• 8 to 32-Bit Timers, Counters, and PWMs

• CRC and PRS Modules

❐ Full Duplex UART, SPI™ Master or Slave: Connectable to All GPIO Pins

❐ Complex Peripherals by Combining Blocks

■ Flexible On-Chip Memory:

❐ 4K Flash Program Storage 50,000 Erase/Write Cycles

❐ 256 Bytes SRAM Data Storage

❐ In-System Serial Programming (ISSP)

❐ Partial Flash Updates

❐ Flexible Protection Modes
 

 


❐ EEPROM Emulation in Flash

■ Complete Development Tools:

❐ Free Development Software (PSoC Designer™)

❐ Full Featured, In-Circuit Emulator and Programmer

❐ Full Speed Emulation

❐ Complex Breakpoint Structure

❐ 128 Bytes Trace Memory

■ Precision, Programmable Clocking:

❐ Internal ±2.5% 24/48 MHz Oscillator

❐ Internal Oscillator for Watchdog and Sleep

■ Programmable Pin Configurations:

❐ 25 mA Sink, 10 mA Source on all GPIO

❐ Pull Up, Pull Down, High Z, Strong, or Open Drain Drive Modes on All GPIO

❐ Up to Eight Analog Inputs on GPIO

❐ Configurable Interrupt on all GPIO

■ Additional System Resources:

❐ I2C Master, Slave and MultiMaster to 400 kHz

❐ Watchdog and Sleep Timers

❐ User Configurable Low Voltage Detection

❐ Integrated Supervisory Circuit

❐ On-Chip Precision Voltage Reference


图1.CY8C21x23方框图
 

 


Blood pressure is one of the vital signs in the human body. It is measured using both invasive and non invasive techniques. This application note demonstrates how to build a non invasive blood pressure monitor using the PSoC®. This design does not use any external active components to buffer, amplify, and filter the signal.

The blood pressure monitor operates on the following principles.

The cuff is worn around the upper arm and it is inflated beyond the typical systolic pressure.

It is then deflated. The pressure starts decreasing, resulting in blood flow through the artery; this makes the artery to pulsate.

The pressure measured on the device during onset of pulsations defines the systolic blood pressure.

Then the cuff pressure is reduced further. The oscillations become increasingly significant, until they reach maximum amplitude.

The pressure at the maximum amplitude of these oscillations defines the average blood pressure.

The oscillations start decreasing as the cuff pressure reduces. The pressure at this point defines the minimal blood pressure or diastolic blood pressure. 
 
This method of measuring blood pressure is the oscillometric method. It is often used in automatic blood pressure monitor devices because of its excellent reliability. Estimation of systolic and diastolic pressure is done using various empirical algorithms. The device uses oscillometric method to determine systolic and diastolic pressures .

This system includes the following blocks:

Pressure sensor

Amplifier

Filter

Multiplexer and ADC

Heart rate timer

Safety timer

Pneumatics

Display


图2. PSoC血压方框图

PSoC血压计主要元件:

1. Pressure Sensor

The pressure sensor for blood pressure monitoring system should have the following characteristics:

Measure pressures from 0 mmHG (0 Kpa) to 300 mmHg (40 Kpa).
 

 


Gauge type, because blood pressure in relation to atmospheric pressure

MPX2053 (piezoresistive pressure sensor from Free scale) is used in this example. It gives differential output with maximum measurable pressure range of 50 Kpa. It has a transfer characteristic of (20 mV/50 Kpa) 0.4 mv for every 1 Kpa change in pressure or 53 μV per mmHG with Vs=5V.

2. Amplifier

The sensor output is in the order of a few mega volts. Three opamp topology instrumentation amplifier is used to amplify the pressure signal. It provides a gain of 93.

Gain = Diff Gain * Conversion Gain = 48 * 1.98 = 93

3. Filter

The sensor output consists of two signals: cuff pressure signal and oscillometric signal. The oscillometric signal has frequency components between 0.3 Hz to 20 Hz. Two stage filters are used to filter out the oscillometric pulses.

4. First Stage

A high gain AC filter, described in the Cypress application note AN2320 is implemented in the first stage.


图3.高AC 增益放大器电路

The filter’s cutoff is set around 1 Hz. This filter removes all DC components and gives the AC signal a sufficient gain. The output of the first stage has unwanted high frequency components.

5. Second Stage

High frequency components are removed using two pole low pass filters implemented inside PSoC. This filter is constructed using two switched capacitor blocks. The filter’s cutoff is set at 50 Hz with a 0 dB gain.

6. Multiplexer and ADC

DC Pressure signal and the oscillometric are multiplexed to ADC inside the PSoC. The MUX selects one of these signals to a 13-bit incremental ADC, which runs at a sampling rate of 30 samples/second.

7. Heart Rate Timer

A 24-bit timer is used to calculate the heart rate. Timer is clocked using a source of frequency 62.5 kHz. The period value is set to 500000 to deliver an output of 4 seconds. Heart rate is calculated by capturing the timer period at oscillometric pulse triggers.

Start the four second window timer

Capture the timer’s period value when oscillometric pulses crosses the defined threshold

Record timer value for four such crossings

 

 


8. Safety Timer

This timer generates an interrupt every four seconds and checks if the cuff pressure is above specific threshold for that time window. (AAMI safety standards defines the maximum time limit for holding a particular pressure at arm cuff.) If the pressure in the cuff exceeds the safety pressure level then the solenoid valve is opened to deflate the cuff completely.

9. Pneumatics

Pneumatics forms the main part of any blood pressure monitoring system. Pneumatics of a typical monitor has the following:

Cuff

Air chamber

Rolling pump

Solenoid valve

The cuff is worn around the upper arm; it detects the change in pressure due to pulsation of artery. Cuff is connected to pressure sensor through air chamber, which in turn connects to the solenoid valve and rolling pump. Rolling pump inflates the cuff. Solenoid valve deflates the cuff at a defined rate .Usually the deflation rate is lowered if more samples of oscillometric pulses are needed and vice versa. Figure 5 shows the pneumatics setup used to build a typical blood pressure monitor.

10. Display

A 16x2 character LCD is used to display the results Using RS232 communication, the. oscillometric pulses are recorded with reference to pressure in cuff. Figure 6 shows the oscillometric pulses and pressure in cuff recorded during deflation.


图4.PSoC血压计外形图

相关资讯
蓉城聚势!AI芯算驱动,2025成都西部电博会7月9日盛大开幕

2025年7月9日至11日,一场引领西南乃至全国电子信息产业风向的盛会——第十三届中国(西部)电子信息博览会,将于成都世纪城新国际会展中心璀璨启幕! 本届展会深度契合时代发展与产业升级脉搏,匠心布局电子元器件、集成电路、特种电子、数字产业、机器人等核心主题展区,并特设西部地区创新成果专区。十余场高规格专题论坛、500+专家学者前沿洞见、500+优质厂商创新成果展示、超20000名专业观众共聚一堂,海量创新方案与新品首发、精彩活动轮番上演,共同铸就这场融汇前沿智慧与澎湃创新的西部电子信息领域年度盛宴!

多重压力下 LG电子Q2营业利润同比暴跌46.6% 下半年押注高端与内容生态突围

LG电子近日公布的2024年第二季度初步财报显示,公司面临显著盈利压力。财报数据显示,4月至6月当季合并营业利润为6391亿韩元(约合4.67亿美元),较去年同期大幅下滑46.6%,环比上一季度也录得49.2%的下跌,业绩表现远低于市场此前7533亿韩元的普遍预期。同期营收为20.74万亿韩元,同比减少4.4%,环比下降8.8%。

瑞芯微2025年上半年业绩强势预增 端侧AI驱动AIoT业务全线爆发

7月7日,国产芯片设计龙头企业瑞芯微(Rockchip)发布2025年半年度业绩预增公告。经初步测算,公司报告期内预计实现营业收入约20.45亿元,较2024年同期大幅增加7.96亿元,同比增幅高达64%。归属于母公司股东的净利润预计达5.2亿至5.4亿元,同比暴增3.37亿至3.57亿元,增长率突破185%-195%高位区间。

爬电7.3mm 耐压5KVAC!金升阳增强绝缘CAN模块领航高可靠通信

工业自动化、新能源发电、智能电网等领域的迅猛发展,对现场总线通信的可靠性与安全性提出了前所未有的高标准。尤其在高压、强电磁干扰及严苛环境的复杂工业场景中,传统CAN隔离收发模块的绝缘性能已面临挑战。针对市场对高电压隔离与增强型绝缘的迫切需求,金升阳创新推出 TDH301DCAN-RGX 增强绝缘型隔离收发模块,为高可靠性通信系统提供核心保障。

立即订购:贸泽电子一站式供应ADI工业以太网解决方案

2025年7月7日 – 全球领先的电子元器件与工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 今日宣布,正式供应Analog Devices, Inc. (ADI) 最新推出的ADIN3310和ADIN6310工业以太网交换机。这两款专为严苛工业场景设计的3端口和6端口千兆以太网交换机,集成了关键的时间敏感网络 (TSN) 能力,旨在驱动现代工业网络迈向低延迟、高可靠通信的新高度。