发布时间:2012-11-30 阅读量:641 来源: 我爱方案网 作者:
RFID(RadioFrequencyIdentification,无线射频识别)技术是起源于上世纪50年代的一项自动识别技术。RFID技术有着广阔的应用前景,智能交通、物流仓储、零售业、制造业、医疗等领域都是RFID的应用领域。
发展低碳交通大势所趋,利用RFID技术,通过开发电子环保标志系统,对汽车按不同排放标准进行分类控制管理,在此基础上设立低碳交通区,是当前国内“感知中国”大环境下的必然选择。
通过低碳交通区的建设,在城市中形成“高污染黄标车禁止通行、普通排放车限制或收费通行、零排放车自由通行”的城市交通格局,将会对促进淘汰高污染车辆、鼓励使用低碳排放的如油电混合动力车,特别是零碳排放的纯电动车等新能源汽车起到推动作用,同时还能有效化解城市拥堵问题,真正达到低碳交通、节能减排、改善空气质量的目的。
通过建立低碳交通旅游区、低排放示范区,在一定区域内基本消除车辆排放污染物,提高城市环境空气质量水平,特别是改善道路周边的空气质量。通过示范项目可鼓励更多市民购买和使用新能源汽车和低排放汽车,减少尾气污染带来的危害,保护生态环境。
低碳交通区系统主要由环保电子标志、车辆感知基站、环境监测基站和监管控制平台四个部分组成。
电子环保标志。采用900MRFID电子标志,这种电子标志包含车牌号、车型号、排放标准等车辆信息,并且具备唯一识别码,代替原有的常规纸质环保标志,并且与汽车形成唯一的对应关系。
车辆感知基站。采用双基识别技术(即视频+射频),通过射频识别可实现对电子标签的非接触自动识别,能够远距离(最大15m左右)对高速行驶(180km/h)的车辆上的电子标志进行检测和读写;通过视频识别实现车牌识别、拍照取证,并能与射频识别结果匹配。
环境监测基站。建立在道路两侧,能够实时检测、预警城市路网的机动车污染状况。
监管控制平台。是低碳交通区系统的大脑,负责对传输过来的识别信息和环境信息进行智能分析,协同环保与公安业务处理平台,实现低碳交通区监管业务分析及处理。
RFID在低碳交通建设中的应用包括以下几部分:
1)应用于绿色智能交通系统的建设,实现治堵和治污双赢
拥堵与污染共生,越是拥堵,污染越严重,对人的危害越大。
通常情况下,车辆以20km/h速度行驶时的尾气排放量是40km/h时的一倍以上。以电子环保标志为载体,利用物联网技术,建立智能交通系统,对交通综合信息进行采集、组织、分析,根据道路拥堵状况进行交通调控,使路网上的交通流运行处于最佳状态,从而改善交通拥堵,降低机动车污染。据估算,能减少机动车污染物排放15%-20%。
2)应用于公交优先通行系统
电子环保标签可以满足信号自动采集的需要,为发展公共交通、坚持公交优先战略、建设公交专用道路和公交优先通行信号系统服务。通过提高公交运输速度,形成快速公交系统,从而提升公交出行率,降低私家车的出行比例,减少尾气排放。
3)应用于高污染黄标车和无标车限行执法
高污染黄标车是指排放标准达不到国Ⅰ的机动车,无标车是指未经环保年检或环保年检不合格无法领取环保标志的车辆。黄标车和无标车虽只占城市机动车总量的10%-15%,但排放的污染物却达机动车排污总量的50%。利用电子环保标志和物联网技术建立的区域限行系统,可以实现机动车信息系统、环保监管系统和道路通行系统的三者联网,从而实现车辆标志识别判断的唯一性,提高限行管理的准确性和高效性。
4)应用于不同排放标准车辆的通行控制
试行拥堵收费政策,设立低碳交通区。即在对黄标车和无标车设定限行区域的基础上,建立只允许新能源汽车、纯电动汽车、国Ⅴ以上汽车等免费通行的低碳交通区,其他国Ⅰ-国Ⅳ等汽车根据不同的排放水平分类收费通行。
5)应用于机动车上牌、年检、路检的环保核查
利用电子环保标志可以有效实现机动车上牌管理环保写入、公安读取的联网审核控制,确保上牌车辆100%环保达标;可以有效防止尾气年检换车检测等作弊;可以实现路检执法人员手持移动执法终端,远程查询车辆信息,现场查处黄标车、无标车、标志失效车、伪造、变造标志车的功能。
6)应用于交通污染智能监测在线调控系统
建立道路两侧环境空气和机动车污染监测体系,实时检测预警城市路网的机动车污染状况,结合智能交通系统,利用电子环保标志信息对车辆通行实施智能调控。
7)应用于全国机动车污染联防联控机制的保障
现有纸质标志完全依靠人工执法,由公安交警拦车、环保人员检查,执法成本高、效率低、执行难,建立全国统一标准和内容的电子环保标志制度,路检执法人员配置相关读写仪器或手持PDA(环保通、警务通),可以实现各城市之间的标志互认,真正达到联防联控的目的。
8)应用于政府其它部门的信息共享
通过开发环保、公安、交通、城建等多部门的信息集成平台,实现电子标志信息快速共享,实现对车辆的城市综合管理,如交强险、自动收费计次等。
在全球科技博弈背景下,美国对华AI芯片出口限制政策持续升级。腾讯总裁刘炽平在2025年第一季度财报会上明确表示,腾讯已具备应对供应链风险的充足储备与技术创新能力,标志着中国AI产业正加速走向自主化发展道路。本文结合产业动态与政策趋势,剖析中国AI产业的战略转型与突破路径。
在全球半导体产业链加速重构的背景下,荷兰半导体设备巨头ASM International(以下简称“ASM”)近期通过一系列战略调整引发行业关注。2025年5月15日,该公司宣布将通过转嫁关税成本、加速美国本土化生产及优化全球供应链,应对地缘政治风险与贸易壁垒。面对美国近期加征的“对等关税”政策(涵盖钢铁、汽车等商品,未来可能扩展至半导体领域),ASM展现出显著的供应链韧性:其亚利桑那州工厂即将投产,新加坡基地产能同步扩充三倍,形成“多区域制造网络”以分散风险。与此同时,中国市场成为其增长引擎——2025年中国区销售额或突破预期上限,占比达总营收的20%,凸显其在差异化竞争中的技术优势。这一系列举措不仅反映了半导体设备行业对关税政策的快速响应,更揭示了全球产业链从“效率优先”向“安全韧性”转型的深层逻辑。
在全球半导体产业长期被x86与ARM架构垄断的背景下,国产芯片厂商的生态自主化已成为关乎技术主权与产业安全的核心议题。北京君正集成电路股份有限公司作为中国嵌入式处理器领域的先行者,通过二十余年的技术迭代,探索出一条从指令集适配到生态重构的独特路径——早期依托MIPS架构实现技术积累,逐步向开源开放的RISC-V生态迁移,并创新性采用混合架构设计平衡技术过渡期的生态兼容性。这一转型不仅打破了国产芯片“被动跟随”的固有范式,更在智能安防、工业控制、AIoT等新兴领域实现了从“技术替代”到“生态定义”的跨越。据行业数据显示,其基于RISC-V内核的T系列芯片已占据计算芯片市场80%的份额,成为推动国产架构产业化落地的标杆。本文通过解析北京君正的架构演进逻辑,为国产半导体产业突破生态壁垒提供可复用的方法论。
5月15日,高通技术公司正式推出第四代骁龙7移动平台(骁龙7 Gen 4),以台积电4nm制程打造,性能迎来全方位升级。该平台采用创新的“1+4+3”八核架构,CPU性能较前代提升27%,GPU渲染效率提升30%,并首次支持终端侧运行Stable Diffusion等生成式AI模型,NPU算力增幅达65%。在影像领域,其搭载的三重12bit ISP支持2亿像素拍摄与4K HDR视频录制,配合Wi-Fi 7与XPAN无缝连接技术,重新定义中高端设备的创作边界。荣耀与vivo宣布首发搭载该平台的机型,预计本月上市,标志着生成式AI技术向主流市场加速渗透。
5月15日晚间,小米集团CEO雷军通过个人微博账号正式宣布,由旗下半导体设计公司自主研发的玄戒O1手机SoC芯片已完成研发验证,计划于本月下旬面向全球发布。据雷军透露,该芯片将采用业界领先的4nm制程工艺,核心性能指标已接近国际旗舰水平。