适用于任何汽车电源范围的2MHZ开关电源方案

发布时间:2013-08-7 阅读量:1118 来源: 我爱方案网 作者:

【导读】用于汽车收音机和娱乐系统供电的8V中等电压开关电源设计方案可以接受任何汽车工作条件下的输入电压范围,保证稳定的8V输出,为常见的娱乐设施子系统供电。为了避免干扰AM/FM频段,开关电源工作在2MHz开关频率,非常适合车载应用。

随着汽车启停技术(空闲状态自动关闭引擎)应用的普及,越来越多的车载系统要求能够工作在较低的输入电压,低压输入往往发生在热启动(电池电压低于6V)或冷启动(电池电压低于3V)条件下。图1介绍了常见的汽车系统供电架构方案。

在一些主电源为3.3V的供电系统中,前端采用低压差的buck转换器即可满足要求(CASE 1)。需要时,可以选择一路boost转换器将3.3V升压到5V (例如为CAN总线收发器供电)或更高电压(CASE2)。有些系统采用5V或更高电压供电,此时需要在前端进行“预升压”,保证buck的输入电压不会低于指定电压(CASE 3),本设计适用于后者。

适用于任何汽车电源范围的8V 2MHZ开关电源方案
图1. 汽车电源方案。
 
汽车设计中,低电磁辐射也是一项重要的考核指标,特别是在敏感的AM频段。本设计中,电源的开关工作频率远高于AM频段(例如:开关频率在1.71MHz以上,位于MW频段的高端),进而解决了干扰问题。较高的开关频率也有助于减少系统尺寸,降低外围元件的成本。
 

图2是开关电源的原理图,MAX15005升压控制器与MAX16952降压控制器相组合,配合外围电路提供合理的车载系统供电方案。两款IC均同步到控处理器或专用IC提供的外部2MHz时钟,便于优化电源的开关频率。电池正常供电的条件下,MAX15005不工作,通过MAX16952提供稳定的8V OUTB电压。冷启动时,由于电池电压降低,则通过MAX15005提升节点OUTA的电压,确保MAX16952提供稳定的8V OUTB电压。两款IC的高可靠性,可以满足汽车环境中高达40V的抛负载。该方案已经通过测试,在OUTB节点提供高达20W的输出功率(8V@2.5A)。更换外围电路,可以获得更高的输出功率。

适用于任何汽车电源范围的8V 2MHZ开关电源方案
图2. 开关电源原理图。
 
 
MAX16952的外围元件

输出电压和开关频率

为了在OUTB端获得稳定的8V输出,需要合理选择反馈分压电阻(R22和R21)。选择R22 = 51KΩ (MAX16952数据资料推荐低边电阻R22 < 100kΩ),R21根据下式计算:


    (式1)
式中,VFB = 1V (典型值)。

选择标准阻值R22 = 360kΩ ,典型输出电压为:

    (式2)
假设阻值误差为1%,最小和最大OUTB输出电压为:

    (式3)
 
    (式4)
其中,VFB(MIN) = 0.985V,VFB(MAX) = 1.015V。

按照规格书推荐,外部时钟频率必须高于MAX16952内部时钟频率的1.1倍。由于我们采用2MHz外部时钟同步MAX16952的开关频率,须合理选择内部振荡器阻抗R16,控制内部开关频率<1.8MHz。本设计中,R16选择为30kΩ。为确保MAX16952开关频率固定在2MHz,必须避免发生电压跌落。MAX16952只有在关断时间(tOFF)>100ns (典型值)时,才可避免电压跌落的情况,这意味着系统不能超出最大占空比:

.     (式5)

考虑到降压转换器的效率为90%,保证工作在2MHz固定开关频率的最小输入电压(OUTA)是:

.     (式6)
这意味着OUTA电压不能低于11.11V阈值。为保证OUTA电压始终高于11.11V,当电池电压(IN节点)低于11.5V时,需要开启MAX15005工作(考虑到L1、D2肖特基二极管的压降,留出大约390mV的裕量)。
 

达到40V抛负载峰值电压时,OUTA达到其高压点,MAX16952必须将输出电压稳定在8V。因此,发生抛负载期间,MAX16952占空比为:

.     (式7)
 
MAX16952的最小开启时间(tON)为80ns,因此最小占空比(2MHz开关频率下)为:

.     (式8)
 
0.16最小占空比可确保抛负载条件下(输入电压高达40V时)提供稳定的8V输出。

电感和电流检测

适用于任何汽车电源范围的8V 2MHZ开关电源方案
图3. MAX16952电感电流。
 
使用大电感可以降低电感电流峰值,提高降压转换器的效率;但也占用更大的电路板(PCB)面积,降低负载调整率。一种可以接受的折中方法是选择适当的电感值,使LIR (电感AC电流峰-峰值与DC平均电流的比值) ≤ 0.3。基于图3,利用下式计算:

  (式9)
 
   (式10)
.     (式11)
 
 

根据以上方程组,可以得到电感计算公式:

    (式12)
 
由此,常规条件下(OUTA = 12V)满足LIR ≤ 0.3的最小电感值为:

   (式13)
 
选择标准电感L2 = 2.2µH,LIR = 0.24,电感峰值电流为:

   (式14)
 
当测流电阻R20的电压达到68mV (最小值)时,达到电流上限。为了留出一定裕量,选择检流电阻时,应使电感电流达到峰值(IPEAK)时,检流电阻的压降是电流门限的60%:

(式15)
 
R20选择为15mΩ标准电阻。

MAX15005的外围元件

UVLO阈值

选择MAX15005升压转换器外围元件的第一步是确定UVLO阈值,通过选择输入IN、ON/OFF、GND之间的分压电阻设定欠压门限。本设计当输入电压< 5V时,关闭MAX15005,假设冷启动期间能够保持在较高电压。选择R5 = 100kΩ,利用下式计算R4:

(式16)
 
R4选择为300kΩ标准电阻。
 

过压输入(OVI)

按照前面有关MAX16952的讨论,OUTA不能低于11.11V,以保持MAX16952的最小压差要求。考虑到该电压阈值,以及L1、D2产生的压降,MAX1005必须在输入电压低于11.5V时开启。而为了优化效率,正常输入电压(IN=12V)下,MAX15005必须关闭。

为了达到这一目的,利用IN、OVI、GND引脚之间的分压电阻设置过压门限,正确开启或关闭MAX15005。MAX15005在OVI引脚电压超过1.228V阈值时关闭,OVI引脚电压比1.228V阈值电压低125mV时,再次开启。选择低边电阻R2 = 20kΩ,考虑到在输入电压高于11.6V时MAX15005关断,按照下式选择R1:

   (式17)
 
选择R1为170kΩ标准电阻,则当主电源超出11.67V时关断MAX15005,相对于常规电压12V,预留330mV的裕量。考虑到OVI比较器的滞回,可以按照下式估算电压下限,即当主电源电压下降到下式决定的数值时开启MAX15005:

(式18)
 
由此可见,比较器的滞回过大,需要将主电源的电压跌落门限调整到至少11.5V。可以在OVI引脚与SS引脚之间增加一个串联电阻R3和肖特基二极管D1。当关断MAX15005时,SS引脚在内部接地,使得R3与R2并联,从而减小滞回。选择R3 = 180kΩ,忽略二极管压降,则可得到新的电压跌落阈值:

(式19)
 
按照这一配置,可以得到所要求的开启/关闭MAX15005的输入电压阈值。另一方法可以使用外部比较器监测主电压,用其直接驱动OVI引脚。

输出电压

适用于任何汽车电源范围的8V 2MHZ开关电源方案
图4. MAX15005电感电流。
 
 
为了维持2MHz的开关频率,须注意tON最小值为170ns (参见MAX15005数据资料)。最小tON对应于34%的最小占空比(2MHz开关频率下),这限制了MAX15005的最小稳压输出。估算电压阈值时,有必要考虑boost稳压器的占空比公式:

  (式20)
 
当输入电压VIN达到最大值11.67V时,对应于最小占空比,且MAX15005保持工作。按照之前的公式可以估算MAX15005的最小稳压输出:

   (式21)
 
计算考虑了最小占空比、最大输入电压条件,假设D2压降为0.3V,忽略NMOS管N1上的压降。由此,MAX15005必须将输出电压稳定在17.38V以上,以保证任何条件下维持2MHz的开关频率。

选择低边反馈电阻R13 = 10kΩ,计算高边反馈电阻R14:

(式22)
 
其中,VFB(MIN) = 1.215V。
最后,选择R14 = 137kΩ (1%误差),MAX15005最小稳压输出为:

(式23)

可确保MAX15005始终工作在2MHz开关频率。

假设MAX16952的输出功率为20W (8V,2.5A)、效率为90%,MAX15005的输出功率必须在至少22.3W。考虑到17.53V的稳压输出,MAX15005的平均输出电流为 1.27A。如果MAX15005输出电压设置在更高值,则会降低输出电流。D2可以选用低成本的肖特基二极管,输出电容C7必须能够支持 MAX15005的稳压输出。

同步和最大占空比

为了保证MAX15005开关频率的外同步,外部时钟频率必须比内部振荡频率高出至少102%。选择R6 = 7kΩ、C4 = 100pF,MAX15005内部振荡频率约为1MHz,外部同步时钟频率为2MHz。

当SYNC输入检测到同步信号的上升沿时,C4通过内部1.33mA (典型值)电流源放电。该电容(RTCT引脚)电压达到500mV时,C4通过R6充电(R6连接在VREG5引脚),直到检测到下一个同步信号的上升 沿。放电时间(TDISCHARGE)决定了稳压器的最小关断时间tOFF。如果时间小于160ms,则将最小tOFF钳制在160ns。实际上,假设充 电时间(TCHARGE)为340ns (TP = 500ns),RTCT电压升至:

(式24)
 
 

 
考虑到放电电流为615µA¹,在RTCT引脚增加的放电时间为:
 
 

  (式25)


最小tOFF = 160ns对应的最大占空比为68%。当最大占空比受限制时(输入电压较低,这里为5V),根据boost占空比公式(式20),MAX15005在OUTA端能够提供的最大稳定电压是:

(式26)
 

此电压确保MAX16952在超出电压跌落条件限制时仍可正常工作。

电感选择

合理选择电感值,以满足boost转换器的最小输出电流要求。为保证稳压器始终工作在连续模式,最小电感值为:

(式27)
 
此设计中,最差工作条件发生在VIN的最大输入电压(11.67V)下,对应占空比为37%。

配合8V、最小输出电流为1A、效率为90%的buck转换器工作时,boost转换器的最小输出功率为9.44W,对应的最小输出电流IOUTA(MIN)为538mA。综合这些因素,根据前面的公式计算得到1.32µH电感值。此设计中选择L1 = 2.2µH。

电流检测

MAX15005在检流电阻的电压达到305mV时触发电流限制。因此,为了合理选择检流电阻,需首先计算boost电感的峰值电流:

(式28)
 
输入电压处于最小值时达到电感峰值电流,本应用中最小输入为5V,最大占空比为68%。按照之前的计算,boost输出电压(OUTA引脚)为15.23V,需要1.46A的IOUTA以支持MAX16952的功率需求。最恶劣的工作情况对应于电感电流峰值达到4.95A时,留出适当的裕量,选择检流电阻使得电感电流达到峰值时,压降为200mV:

  (式29)
 
选择:R10 = 40MΩ。
 

实验室测试


冷启动测试

在实验室进行冷启动测试,在10ms内将主电源输入(IN)从12V降到7V。如曲线图1所示,当输入电压降低时,MAX15005开始将OUTA充电至17.5V,以保证OUTB输出8V。另外,当输入电压恢复到正常电压时,MAX15005停止工作,OUTA输出电压降到正常的IN输入水平,在D2和L1上有较小压降。每次测试都基于2.5A的OUTB输出。

适用于任何汽车电源范围的8V 2MHZ开关电源方案
曲线图1
 
曲线图2和曲线图3分别描述了冷启动下降和上升阶段的状况。

适用于任何汽车电源范围的8V 2MHZ开关电源方案
曲线图2
 
适用于任何汽车电源范围的8V 2MHZ开关电源方案
曲线图3

 
频域分析

基于示波器的FFT分析工具,冷启动下MAX16952开关节点LX_BUCK引脚的电压频谱如曲线图4 (IN电压下降阶段)和曲线图5 (IN电压电压上升阶段)。注意到频谱中包括2MHz频率,相关谐波为直流分量。没有低于2MHz的交流分量,避免对AM频带产生干扰。

适用于任何汽车电源范围的8V 2MHZ开关电源方案
曲线图4
 
适用于任何汽车电源范围的8V 2MHZ开关电源方案
曲线图5
 
对MAX15005开关节点LX_BOOST进行同样测试,用彩色表示2MHz频率、谐波和直流分量,在AM频带具有极低噪声。

适用于任何汽车电源范围的8V 2MHZ开关电源方案
曲线图6
 

适用于任何汽车电源范围的8V 2MHZ开关电源方案
曲线图7
电路优化

为了优化效率,可以在MAX15005不工作时旁路D2肖特基二极管。当主电源处于正常电压范围时,利用一个N-MOSFET旁路D2。为降低电磁干扰,可以增加电阻(R8、R17、R18和R19)来降低在MOSFET栅极电压的摆率,当然,这会增大功耗,需要折中考虑。为了滤除MAX15005检测电流的毛刺,增加由C6和R9组成的RC滤波器。也可以通过增加R7电阻—来降低MAX15005电流门限阈值,以降低检流电阻R10的功耗。

相关型号

MAX15005     4.5V至40V输入、用于汽车电子的反激/boost/SEPIC电源控制器  
MAX16952     36V, 2.2MHz Step-Down Controller with Low Operating Current    
相关资讯
全闪存与软件定义双轮驱动——中国存储产业年度趋势报告

根据IDC最新发布的企业级存储市场追踪数据,2024年中国存储产业迎来结构性增长拐点。全年市场规模达69.2亿美元,在全球市场占比提升至22%,展现出强劲复苏态势。以浪潮信息为代表的国内厂商持续突破,在销售额(10.9%)和出货量(11.2%)两大核心指标上均跻身市场前两强,标志着本土存储生态的成熟度显著提升。

索尼启动半导体业务战略重组 图像传感器龙头或迎资本化新篇章

全球消费电子巨头索尼集团近期被曝正酝酿重大战略调整。据彭博社援引多位知情人士透露,该集团拟对旗下核心半导体资产——索尼半导体解决方案公司(SSS)实施部分分拆,计划于2023年内推动该子公司在东京证券交易所独立IPO。该决策标志着索尼在半导体产业布局进入新阶段,同时也预示着全球图像传感器市场格局或将发生重要变化。

革新智能驾驶通信:移远车载蜂窝天线补偿器如何破解行业痛点?

在2025上海国际车展上,移远通信推出的全新车载蜂窝天线补偿器引发行业关注。该产品通过双向动态补偿、微秒级频段切换及混频电路集成等核心技术,解决了车载通信中长期存在的射频链路损耗难题,为智能网联汽车提供稳定高效的通信支持。本文将从技术优势、竞争分析、应用场景及市场前景等多维度解读这一创新方案。

全球DRAM市场变局:三星技术迭代与SK海力士堆叠方案的对决

在全球DRAM市场格局加速重构的背景下,三星电子近期宣布将跳过第八代1e nm工艺节点,转而集中资源开发基于垂直通道晶体管(VCT)架构的下一代DRAM技术。据内部路线图显示,三星计划在2027年前实现VCT DRAM量产,较原定计划提前一个世代。该技术通过三维堆叠晶体管结构,将存储单元面积缩减30%,并利用双晶圆混合键合工艺解决信号干扰问题,被视为突破传统平面工艺物理极限的核心方案。

京东方2025年一季度净利润飙升64% 显示业务领跑全球推动业绩新高

2025年4月28日,京东方科技集团股份有限公司(以下简称“京东方”)发布2025年第一季度财报,以多项核心经营指标的历史性突破,彰显其作为全球半导体显示龙头企业的强劲发展动能。报告期内,公司实现营业收入505.99亿元,同比增长10.27%,创下一季度收入新高;归属于上市公司股东的净利润达16.14亿元,同比大幅增长64.06%,扣非净利润13.52亿元,同比飙升126.56%。这一业绩表现得益于其“屏之物联”战略的深化落地,以及“1+4+N+生态链”业务架构下各板块的协同创新。