发布时间:2014-01-7 阅读量:888 来源: 发布人:
系统结构
系统主要由嵌入式USB 主机和ZigBee 分节点播放器组成。而USB 主机又是系统设计的关键,主要由USB接口、MCU 控制器、ZigBee 主节点和电源模块等组成,系统结构如图1 所示。
系统处理流程为:本地端控制器MSP430 通过CH375 按照相应的USB 协议,读取U 盘或MP3 中的音频文件,并将其传输给ZigBee 主节点。ZigBee主节点利用ZigBee 网络将音频信号发送给位于不同位置的ZigBee 分节点。分节点接收到信号后,经过处理,将数字信号传送给音频解码芯片,经解码后实现音频输出。
图1 系统结构
系统硬件设计
1、USB接口部分
第一部分,CH375
H375 是一个USB 总线的通用接口芯片,支持USB-HOST主机方式和USB-DEVICE/SLAVE 设备方式。在本地端,CH375 具有8 位数据总线和读、写、片选控制线以及中断输出,可以方便地挂接到单片机/DSP/MCU/MPU 等控制器的系统总线上。
CH375的USB主机方式支持常用的USB全速设备,外部单片机可以通过CH375按照相应的USB协议与USB 设备通讯。CH375 还内置了处理Mass-Storage 海量存储设备的专用通讯协议的固件,通常情况下,外部单片机不需要编写固件程序,就可以直接以扇区为基本单位读写常用的USB存储设备(包括USB硬盘/USB闪存盘/U盘)。
第二部分,U盘接口设计
由于CH375 和单片机采用并行方式通信传输速度快,编程简单,所以本设计采用并行连接方式。
图2 CH375并行接口设计
在CH375 芯片的复位期间,TXD 引脚用于选择通讯接口。如果CH375 在复位期间检测到TXD 引脚为低电平则启用并行接口。硬件连接方式如下:CH375的8 位双向数据总线D7~D0、中断输出引脚INT#、读选通输入引脚RD#、写选通输入引脚WR#以及地址输入引脚A0 分别接MSP430 的P3 口、P1.0、P4.4、P4.5、 P4.6 脚,由于在本系统中CPU 只有一片CH375 扩展,所以片选输入引脚CS#接地选通,接口电路如图2 所示。
2、主控器与ZigBee无线网络部分
本系统采用MSP430F1611 构成控制模块,采用CC2430 为核心的无线收发模块,核心芯片之间采用SPI 方式通讯,MSP430F1611 采用主模式,CC2430采用从模式。
MSP430 系列单片机是美国TI 公司推出的超低功耗16 位混合信号处理器,具有精简指令集结构(RISC)以及丰富的寻址方式;拥有高性能模拟技术及丰富的片上外围模块;大量的寄存器以及片内数据存储器可参加多种运算;在8MHz 晶振工作时,指令速度可达8MIPS.这些特点即保证了可编制出高效率的源程序,又为系统的单片解决方案提供了极大的方便。
CC2430 的选择性和敏感性指数超过了IEEE802.15.4 标准的要求,可确保短距离通信的有效性和可靠性。利用此芯片开发的无线通信设备支持数据传输率高达250Kbps,可以实现多点对多点的快速组网。更重要的是,CC2430 只需极少外部元器件,性能稳定且功耗极低。
MSP430 在低功耗节能方面表现突出,ZigBee 的特色之一也是低功耗,选用这两种芯片,可以保证二者在功耗方面的一致性,有利于系统应用,同时也能保证工作的稳定性。
在电路设计中,利用MSP430 的P3 口接收CH375 读取的U 盘数据,并通过DMA 方式将数据传送给USART1,后者将数字音频信号以SPI 方式传送给ZigBee 主节点。
音频解码部分
在接收端,ZigBee分节点接收到数字信号后,以SPI方式将数据串行传输给解码芯片VS1003,此时CC2420为主模式,VS1003为从模式。
VS1003是由荷兰VLSI公司出品的一款单芯片的MP3/WMA/MIDI音频解码和ADPCM编码芯片,其拥有一个高性能低功耗的DSP处理器核VS_DSP,5K的指令RAM,0.5K的数据RAM,串行的控制和数据输入接口, 4个通用IO口,一个UART口;同时片内带有一个可变采样率的ADC、一个立体声DAC以及音频耳机放大器。
VS1003通过一个串行接口来接收输入的比特流,比特流被解码后通过一个数字控制器到达一个18位过采样多位ε-ΔDAC.通过串行总线控制解码器。除了基本的解码,在用户RAM中它还可以做其他特殊应用,例如DSP音效处理。VS1003与单片机连接的引脚主要有7个,分别为SO、SI、SCLK、/XCS、/XRESET、DREQ、/XDCS.只有保证它们与单片机正确可靠的连接,才能对VS1003 进行有效的操作与控制[4] .CC2430 与VS1003的连接关系如图3所示。
图3 cc2430与音频解码芯片
协议的实现
USB 协议
USB 设备就是能够通过USB 来发送和接收数据,从而实现一定功能的实体。每个USB 设备都具有表明自身能力和所需资源的描述符。在设备第一次连接到主机上之后,首先要接受主机枚举,提供描述符。在得到主机的允许之后,设备就可以分得的USB 带宽,进行数据传输了。
系统通过简单的数据线上的电平变化检测到USB设备的接入与移出,接着主机和外设就按照事先约定的顺序执行一系列的信息交换,也就是主机复位设备->主机给设备供电->设备通过缺省的地址0 与主机通信->主机给设备分配地址->主机请求设备的一系列功能和设备描述符…,因此,在程序中,通过顺序的编程和中断的调度,就可以完成主机系统的标准的USB 活动。以上是主机软件的第一部分,主要实现对外设的配置,读取外设的信息,从而判断该设备属于USB 的哪一类,并确定下一步选用哪个特定的程序加以支持。
单片机系统中,限于系统的性能和要求,只需要支持某几个特定的类就可以了。本系统是一个在USBFlash 存储器中的应用,这个USB 主机需要支持的就是USB 的Mass Storage 类,那么程序就要实现USB的Mass Storage 类所规定的各种命令。主机的程序流程如图4 所示。
图4 USB主机程序流程
整个主机协议的实现主要可以分为以下三点:
①单片机与接口芯片通信的实现。②主机最底层数据包发送的实现。③请求命令的实现。1,2,3,层层递进,一级比一级高级。
ZigBee 协议
ZigBee协议栈建立在IEEE802.15.4标准之上,该标准制定了物理层(PHY)和媒体接入控制层(MAC)规范。ZigBee联盟则定义了其上的网络层(NWK)、应用层(APL)以及安全服务规范。
物理层提供了基本的物理无线通信能力;MAC层提供设备间的可靠性授权和单跳通信连接服务;ZigBee协议栈的核心部分在网络层,主要实现节点加入或离开网络、接收或抛弃其他节点、路由查找及传送数据等功能;应用层包括应用支持子层(APS)、ZigBee设备对象(ZDO)和应用对象。APS提供了网络层和应用层之间的接口;ZDO负责所有设备的管理,如初始化设备的发现和建立安全关系等功能。
ZigBee采用自组织方式组网,支持星形网、网状网和簇状网等多种拓扑结构。由于在智能家居中多采用星型拓扑结构, 因而本论文主要对星型拓扑进行组网和测试。
系统软件设计
1、MSP430控制读取U盘数据
当设备连接到USB总线时,固件执行USB处理程序,处理程序的流程如下:
(1)FAT文件系统初始化。本系统采用的U盘是满足FAT文件格式的,了解FAT文件系统是系统软件设计的基础。FAT文件系统有固定的格式,主要分为主引导扇区、引导扇区、文件目录表和数据区等几个部分。MP3文件的内容存放在数据区,但为了得到数据区的地址,首先要得到主引导区和引导扇区的内容;文件目录表中记录着文件的信息,如文件名称、类型和簇号等,可以通过得到文件目录表来判断分区中MP3格式文件的数目和每个文件的簇号,这些都为正确地定位MP3文件打基础。
(2)获得MP3文件个数,在这个程序中仅仅查询根目录下MP3格式的文件个数。FAT文件系统的文件目录表中包含分区中所存的文件信息,每个文件的文件目录表占用32个字节空间,该空间的第9、10、11位为文件的扩展名,可以把每个文件的扩展名和MP3格式文件的扩展名相比,进而得到总的MP3格式文件个数。
(3)通过文件目录表找到MP3文件所在的簇号之后就可以得到文件的物理地址,进而读取MP3文件的帧头并获得该文件的信息。MP3文件由三部分组成,首先是ID3V2,然后是数据帧,最后为ID3V1,数据帧的帧头包含MP3的采样率信息,将这些信息通过无线方式传送到接收端,进而对解码器和接口模块进行配置,这样就可以读取文件了。
ZigBee 网络传输的软件设计
ZigBee 无线通信网络由三种节点组成:协调器(ZC)、路由器(ZR)和终端设备(ZD)。协调器是网络的中心节点,在本文中即为ZigBee 主节点;路由器负责网络内信息帧的路由;终端设备连接解码器,实现音频输出。
网络组建过程主要包括以下三个过程:
(1)网络初始化过程:节点初始化后, 扫描信道检查网络是否存在;(2)主节点配置网络过程:产生协调器网络节点,开始配置网络;(3)从节点入网过程:终端设备节点申请加人协调器节点或路由节点。
网络协调器启动后,其它普通节点加入网络时,只要将自己的信道设置成与现有的协调器使用的信道相同,并提供正确的认证信息,即可请求加入网络。一个节点若成功地接收一个子节点,或者子节点成功脱离网络,都必须向协调器汇报。5 是节点加入及脱离网络握手示意图。
图5 节电及脱离网络握手
音频解码部分的软件说明
(1)MP3播放器初始化处理子函数。初始化程序完成对VS1003的PLL、MP3解码器和AUDIO接口初始化,设定控制器的时钟和采样率,开启MP3中断等工作。
(2)MP3播放子程序。找到MP3文件并且配置完MP3解码器和AUDIO接口后,就可以播放MP3了。播放MP3的过程就是按照MP3解码器的请求,把接收到的MP3数据传输到解码器的输入缓冲区的过程。
结语
本设计借助嵌入式USB 主机和ZigBee 无线通信技术,为家用音响系统的设计提供了一种灵活、方便的无线解决方案,该系统具有良好的可扩展性和实用价值。相信随着智能家居产业的发展和ZigBee 无线通讯技术的不断完善,ZigBee 技术将越来越好地融合在智能家居系统的设计中。
本方案创新点:将嵌入式USB 主机和ZigBee 技术创新性地应用于家用无线音响系统,实现了音频数据通过ZigBee 网络的无线传输,实验证明,系统设计合理,方便扩展,价格低廉,是一种有效的解决方案。
在现代工业自动化向智能化、网络化、柔性化加速演进的大背景下,高性能、高可靠、特定场景优化的核心硬件设备构成了系统的“大脑”、“眼睛”和“四肢”。英特尔4U工控机(IPC-615H5)、RK3568高性能监控主板和HPM6400/6300伺服电机控制板分别代表了通用工业计算平台、边缘AI视觉处理平台和高精度运动控制平台的最典型形态。它们在各自的领域拥有独特优势,共同支撑起复杂的工业控制闭环。本文旨在对这三款核心产品进行全方位对比分析,剖析其技术特点、优劣势、应用场景及市场前景,为工业自动化方案选型提供专业参考。
人工智能技术,特别是生成式AI和大规模机器学习模型的迅猛发展,对全球数据中心的基础设施提出了前所未有的高要求。海量数据的实时处理与复杂模型训练,导致数据中心计算负载激增,随之而来的功耗攀升已成为产业亟待解决的核心瓶颈。这不仅推高了运营成本,也对电网承载能力和可持续发展目标构成严峻挑战。如何在高性能计算需求持续增长的同时,有效控制并降低能源消耗,成为AI数据中心建设与升级的关键命题。
2025年6月25日,全球半导体巨头日本罗姆与中国车规芯片领军企业芯驰科技在上海联合宣布,推出面向智能座舱的参考设计"REF68003"。该方案以芯驰科技旗舰级座舱SoC X9SP为核心,集成罗姆多款高安全等级PMIC电源芯片,已在2025上海车展公开展示。
2025年6月25日,三星电子正式发布三款智能显示器新品——M9(32英寸)、M8(32英寸)及M7(32/43英寸双版本)。该系列首次搭载OLED面板与模块化L型支架,通过AI算法重构人机交互逻辑,标志着智能显示技术进入场景自适应新阶段。
随着苹果持续深化OLED面板在平板电脑领域的应用,其供应链体系正迎来新一轮调整。据产业链权威消息,韩国电子组件制造商LG Innotek正积极推进其覆晶薄膜(Chip on Film, CoF)封装技术进入苹果新一代iPad OLED面板供应链体系。该技术是实现显示驱动芯片与面板电气连接的关键封装方案。