【DIY】3D激光扫描仪,打造全方位数字模型

发布时间:2014-02-13 阅读量:2816 来源: 发布人:

【导读】3D激光扫描技术又被称为实景复制技术,它突破了传统的单点测量方法,具有高效率、高精度的独特优势。3D激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型。今天带来一款网友DIY的3D扫描仪,原理讲解详细,有条件的朋友可以试着动手。

原理介绍

物体被放在一个旋转台上,通过摄像头捕捉照射到物体表面的激光线,通过对扫描线的处理得出该剖面的轮廓线。通过旋转台的旋转每间隔一个小的角度进行一次采样,最后得到足够多的表面轮廓线,就可以构建出物体的3D模型。

这个项目主要使用了三角测距法对距离进行测量。普通的三角测距原理如下图:

1

这个测距法得到的是目标点(P1和P2)距离Rotation Center的距离,但是在该扫描仪中,我定义了一个柱坐标系,该坐标系的原点是转盘中心,需要测量的距离也是物体表面距离中心轴的距离。因此,在本项目中,测距的原理图如下:

2

图中最上方“十”字就是旋转台中心,根据以上原理图,可以计算出r的值:

3

做好的事物图如下:
 
4
 
 

电路部分

5

利用单片机驱动步进电机,步进电机带动旋转台,这样可以精确地控制旋转台的转速,得到更好的扫描效果。实物连接如下:

6

Arduino在这里的功能并不重要,只是准确得驱动步进电机缓慢转动。硬件部分不是本文重点,不再敷述。

软件部分

单片机上的软件很简单,就是精确的控制步进电机的转速,因为这个摄像头的帧数很低(随便找个地方15块买的摄像头,估计没有更烂的了),只有10 pbs,设定每隔2°扫描一次需要扫描180次,所以要扫描180个位置需要18秒,因此单片机控制步进电机每18秒旋转一圈就可以了。视频捕捉和处理:

7

从摄像头获取帧之后,查找出扫描线的位置,并根据开始得到的映射关系处理得到物体轮廓的正面投影 ,并利用向量把每个像素点坐标保存起来。

8

上图中右边是直接将原始画面二值化后得到的扫描线粗略位置(未经平滑处理),从图中可以看出,我已经利用中值算法查找出了扫描线的准确位置,并在图中用黑线表示出来。画面左侧,就是利用已经推导出的公式计算出的物体轮廓的正投影轮廓,但是这个轮廓线并不精确(未经平滑处理),并且夹杂着噪点。在所有数据采集完成之后,使用 函数去掉噪点并对扫描线进行平滑处理。
       
去除噪点的算法比较简单,遍历每一个点并计算其和周围4个点的距离,如果改点离周围的点足够远(我设置的是10个像素点),就可以认为这个点是孤立的,即为噪点,于是将其去除。
 
 

平滑算法有很多可以选择,但是我每一条扫描线上的采样点足够密集,达到480个点,即摄像头的纵向分辨率,因此直接采用了中值平滑,将每一条扫描线单独进行平滑处理后在根据其左右两边的两条线再进行平滑,如此反复10次得到了比较满意的效果。但是这样也有一点缺陷,使物体表面本来的小细节丢失了一些。但是这次实验中使用的摄像头成像质量很差,对物体表面的激光扫描线的捕捉不准确,使一些细节本身就无法捕捉到,这也造成了扫描线捕捉不准确,实属无赖之举。
       
这样一直采集到180条轮廓线后就得到了物体表面的信息,这些数据被称作“点云”。利用一个二维向量将点云数据保存起来。由于分辨率的问题,物理上的误差会在0.几毫米,并且如果不经过处理,最后得到的物体模型表面会变得很难看,下面就是表面经过处理和没经过处理得到的模型的对比:

9

绘制模型

点云用柱坐标表达,二维向量的两个角标分别表示了柱坐标的α和h值,其中保持的值为r。在数据采集和处理完成之后,就可以利用OpenGL进行模型绘制了。在绘制模型之前还需要把柱坐标转换成直角坐标。

在OpenGL中,绘制了三种模型:点云,线框,实体。其中,线框模型为了便于观察,可以改变线框的密集程度。这部分并无特别之处,利用得到的点坐标,绘制出物。

10

11

本文介绍了3D扫描仪的原理及制作,可惜的是作者没提供具体的源码和原理图,但也给出了详细的方案,高手可以尝试做一下,像我一样的菜鸟就当涨涨知识,科普一下,希望能对大家有所帮助。
相关资讯
国产突围!川土微电子CA-IF1044AX-Q1 CAN收发器:全链路自主化与EMC性能双突破

随着汽车智能化、电动化浪潮加速,CAN收发器作为车载网络的核心通信接口,其可靠性与安全性成为产业链关注焦点。然而,国际局势的不确定性使得供应链自主可控需求迫在眉睫。川土微电子推出的CA-IF1044AX-Q1 CAN收发器,实现了从设计、晶圆制造到封测的全链条国产化,并通过欧洲权威机构IBEE/FTZ-Zwickau的EMC认证,成为兼具安全性与高性能的国产车规级解决方案。

“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。