MSP430的FM音频频谱分析仪设计方案

发布时间:2014-02-24 阅读量:1480 来源: 发布人:

【导读】调频广播的音频范围在30Hz~15KHz,音频质量的好坏影响了调频广播发射机整体的指标。本文对调频广播的输入音频进行频谱分析,从而提出了一种基于MSP430的FM音频频谱分析仪的设计方案,利用MSP430处理器的优势对音频频谱进行调整和改进。

在实际的广播电视发射工作中,新的发射机的进场测试,发射机的日常指标测试等都涉及了音频的测试。本文设计的音频频谱分析仪就是从信号源的角度出发,测量音频信号的频谱,从而确定各频率成分的大小,为调频广播的各项音频指标的提供参考。

该频谱分析仪方案以MSP43处理器为核心,以数字信号处理的相关理论知识为指导,利用MSP430处理器的优势来进行音频频谱的设计与改进,并最终实现了在TFT液晶HD66772上面显示。

频谱分析仪设计原理

由于在数字系统中处理的数据都是经由采样得到,所以得到的数据必然是离散的。对于离散的数据,适用离散傅立叶变换来进行处理。快速傅里叶变换,是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换,目前已被数字式频谱仪广泛采用。对于长度为N的复数序列 0 1 1 , , , N ? x x L x ,离散傅里叶变换公式为:

1

于是一个序列的运算被分解成两个运算的和的形式, ( ) 1 X k 和( ) 2 X k 可以继续向下分解,最终分解为两点的FFT运算。如果想要FFT运算后的输出为自然顺序排列,则输入序列需要按位倒序来排列,图1为8点FFT的运算图。

2
图1 8点FFT蝶形运算图

经过FFT运算后,可以将一个时域信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了,这就是频谱仪的一般原理。

频谱分析仪的设计及实现

基于FFT的的数字音频频谱分析仪的设计方案,通过ADC采样输入的音频信号,ADC采样完成以后,将数据进行倒序排列并进行FFT运算,结果通过TFT液晶显示出来。系统的框图如图2所示。

3
图2 频谱分析仪系统框架图

(1)音频频谱分析仪硬件实现

为了实现系统功能,采用16bit处理器MSP430来高效处理输入的数据流。MSP430自带ADC12模块,ADC12的采样数据经过运算,通过65K色的液晶显示频谱图。本系统硬件系统图如图3所示。

4
图3 硬件原理图

电源模块为整个系统提供供电。系统还能响应用户按键事件,并进行相应的处理。串口模块为系统的扩展预留。

 

(2)音频频谱分析仪的系统软件设计

系统上电后首先进行系统初始化System_Init(),对看门狗、系统时钟、定时器、I/O端口、ADC等各模块进行初始化。接下来ADC12对连续的模拟信号进行采样,得到离散化的数字信号,由处理器读取该数字信号并进行相应的处理。采样频率过高,采样点数过多,会占用大量宝贵的处理器内存,降低数据处理速度;采样频率过低,又会使采样数据失真而无法恢复原始连续信号。因此,必须根据信号的频率范围来设置采样频率,同时要满足采样定理的要求。

当采样频率一定时,增加采样点数可以提高频率分辨率,但数据存储空间和计算量也相应增大。一般可根据实际需要进行采样点数的选取,通常设置为2的整数次幂,以便于进行后续的FFT谱分析,本系统采样点数为N=16.ADC12采样流程图如图4所示。

5
图4 ADC12流程图

采样后的FFT数据处理是系统的又一个重点和难点,一方面,为了得到正序FFT,需要对原始自然序列进行码位倒序排列;另一方面,为了减少处理器的浮点运算时间,旋转因子kN W 计算采用查表实现。图5为FFT运算的倒序流程图。

6
图5 FFT倒序流程图及计算流程图

如果提前将余弦和正弦计算出来作为全局变量,计算kN W 就可以直接调用进行加减计算,减少了大量的浮点运算时间,会以牺牲一点存储器的代价获得快速的系统响应。表1是编制的N=16时的余弦和正弦表。

7

MSP430F149与液晶HD66772模块之间的连接分为控制总线和数据总线。在液晶屏上正确显示信息,必须对液晶进行两个基本操作:第一,写入指令代码;第二,写入显示数据。

系统调试与运行

因为MSP430F149的主时钟采用8MHz晶振,虽然系统的单条指令的执行时间仅为0.125μs,但是加上处理FFT的运算、ADC12采样频率和液晶的写入时间等影响,液晶的实际刷新频率低于25Hz,产生严重的闪烁感。为了提高刷新频率,将实心柱图改为空心线条,每隔两个空心细线条写入一个实心线条,这样液晶的写入时间减少了2/3,既能保证显示的结果的准确性,也不牺牲系统的写入HD66772液晶的GRAM的时间。解决了信号闪烁的问题。图7为输入音频信号后TFT液晶显示的频谱图。

8
图7 系统运行效果图

图7中将输入信号30Hz-15KHz的音频信号在频域进行了16等分,每一个柱子表示1KHz的频率带宽。从图中可以看到一般音频信号的能量集中在低频段,随着频率的升高音频能量也越来越弱,这也是调频广播采用加权技术来提高性噪比的原因了。

结论

本方案通过ADC采样输入的音频信号,ADC采样完成以后,将数据进行倒序排列并进行FFT运算,结果通过TFT液晶显示出来。由于采用的处理器的处理能力的原因,不能做到很高的采样频率和很精细的频率分辨率,要提高系统的频率分辨率,就需要增加采样点数。可以借助PC的强大处理能力,将采样的数据通过预留的串口传送给PC,在PC上完成FFT运算以及显示,这就是虚拟仪器的方式,实际工作中应用前景也非常大。

相关资讯
Diodes Q2财务报告:营收超预期增长,连续三季度同比上扬

Diodes公司近期公布了截至2025年6月30日的第二季度财务业绩,标志着其连续三个季度实现同比增长,显示出半导体市场的稳步复苏。根据报告,该公司在多个关键财务指标上表现稳健,受益于全球需求的逐步回升和市场结构优化。公司高层认为,这一业绩源于亚洲地区的强劲拉动和产品组合的适应性调整。

MACOM Q3营收同比激增32.3%,射频芯片龙头再创增长新高

美国射频半导体龙头企业MACOM Technology Solutions于8月7日正式公布截至2025年7月4日的第三财季业绩报告。财报显示,当季实现营收2.521亿美元,较去年同期大幅增长32.3%,创下近三年最高单季增速。

Microchip复苏计划成效显著:Q1营收环比增10.8%,库存大幅优化,AI/国防订单强劲

美国微芯科技公司(Microchip Technology)于8月7日发布了其2026财年第一季度(截至2025年6月30日)的财务报告。报告显示,公司业绩呈现显著复苏迹象,多项关键指标环比改善,并超出此前修订后的业绩指引。

产需趋向平衡!赛力斯7月新能源销量占比突破93%

8月8日,赛力斯集团(601127)公布2025年7月产销快报。数据显示,尽管整体市场仍承压,集团在主力新能源汽车板块显现增长韧性,单月销量同比提升5.7%,而传统燃油车型业务持续收缩,反映出业务转型的深化推进。

INS1011SD + VGaN™:颠覆传统BMS的低边保护方案

在追求更高效率、更小体积和更低成本的电力电子系统发展趋势下,传统的硅基(Si)功率器件,特别是在双向能量流动应用(如电池管理系统BMS)中常用的背靠背MOSFET方案,逐渐显现出性能瓶颈。氮化镓(VGaN™)器件凭借其卓越的开关速度、低导通电阻和更小的尺寸,成为理想的替代者。然而,充分发挥VGaN™的潜力需要与之高度匹配的专用驱动芯片。英诺赛科(Innoscience)作为全球领先的VGaN™ IDM厂商,推出全球首款100V低边驱动芯片INS1011SD,标志着“VGaN™+专用驱动”完整解决方案的成熟,为双向电力电子系统设计带来革命性突破。