基于HY16F188的触控温度计设计方案

发布时间:2015-02-3 阅读量:900 来源: 我爱方案网 作者:

【导读】 本文主要是介绍HYCON HY16F188 Series芯片在温度量测上的应用,并透过Touch Key的界面进行操作。HY16F188用于温度上的量测,不需外接的感测组件即完成,达到周边电路简单且省电的应用。

“好消息!2015年新年来临之际,我爱方案网准备了ST开发板、庆科WIFI模块开发套件以及智能硬件研发必备的精密样片,只需填写个人信息与开发计划即有机会获得。更多详情>>>>”

1. 内容简介


温度的量测应用非常的广泛,从农业上的气温观测,及日常防疫的体温量测至工业上的半导体制程,温度都是相当重要的一个指标及依据。本文主要是介绍HYCON HY16F188 Series芯片在温度量测上的应用,并透过Touch Key的界面进行操作。由于HY16F188芯片内部集成高精度∑△ADC,且ADC输出频率最快可以到达10KHZ,藉由外部LCD驱动IC HY2613B完成显示。HY16F188用于温度上的量测,不需外接的感测组件即完成,达到周边电路简单且省电的应用。

2.原理说明

2.1量测原理


本应用的温度量测组件是采用,IC内部的绝对温度传感器TPS,绝对温度传感器由二极管(BJT)组成,其电压信号对温度的变化为一通过0°K曲线,其具以下特色温度传感器在环境温度为0°K时期输出的电压值VTPS@0°K =0V透过测量方式可使得模拟数字转换器ADC的偏移电压(VADC-OFFSET)与BJT之不对称性(IS1≠IS2)自动抵销。校正温度仅需单点校正。

基于HY16F188的触控温度计设计方案

HY16F启用时,TPS的功能随即被自动启用。在同一温度TA(℃)下,量测到VTPS0与VTPS1的数值后,将两数相加并取平均值即可求得在温度TA下测得TPS相对应的电压值VTPS@TA。TPS的输出电压VTPS对温度变化为一线性曲线,故可推倒得出其增益值GTPS(或称斜率)

基于HY16F188的触控温度计设计方案

TPS增益公式

2.2控制芯片

单片机简介:HY16F系列32位高性能Flash单片机(HY16F188)

基于HY16F188的触控温度计设计方案

纮康HY16F系列32位高性能Flash单片机(HY16F188)

(1)采用最新Andes 32位CPU核心N801处理器。

(2)电压操作范围2.4~3.6V,以及-40℃~85℃工作温度范围。

(3)支持外部20MHz石英震荡器或内部20MHz高精度RC震荡器,拥有多种CPU工作频率切换选择,可让使用者达到最佳省电规划。

(3.1)运行模式 350uA@2MHz/2(3.2)待机模式 10uA@32KHz/2(3.3)休眠模式 2.5uA

(4)程序内存64KBytes Flash ROM

(5)数据存储器08KBytes SRAM。

(6)拥有BOR and WDT功能,可防止CPU死机。

(7)24-bit高精准度ΣΔADC模拟数字转换器

(7.1)内置PGA (Programmable Gain Amplifier)最高可达128倍放大。

(7.2)内置温度传感器TPS。

(8)超低输入噪声运算放大器OPAMP。

(9)16-bit Timer A

(10)16-bit Timer B模块具PWM波形产生功能

 

(11)16-bit Timer C 模块具数字Capture/Compare 功能

(12)硬件串行通讯SPI模块

(13)硬件串行通讯I2C模块

(14)硬件串行通讯UART模块

(15)硬件RTC时钟功能模块

(16)硬件Touch KEY功能模块

3.系统设计

3.1硬件说明


HY16F188对于触控温度计的应用,整体电路就只需HY16F开发板上之Touch Key及LCD显示芯片及LCD。

基于HY16F188的触控温度计设计方案

触控温度量测应用內部电路图

3.2温度设定


TPS量测图:ADC内部的PGA放大1倍,ADGN放大1倍,参考电压由VDDA -VSS供给,则ΔVR_I=1.2V

基于HY16F188的触控温度计设计方案

3.3触控设定


基于HY16F188的触控温度计设计方案

内建硬件触控模块(使用模拟比较器方块)

如上图 所示,TOUCH KEY 外围电路连接简单,只需再CMP的正输入端CH1端接入一个参考电容Cref=10nf;CMP的正输入端配置为CH1,与touch key pad的CH1端连接;负输入端配置为RLC,与NON-OVERLAP 的输出端RLO连接;NON-OVERLAP的电压源选择VDD18=1.8v,且CPRLS=1短路22.5R与20R电阻,设置NON-OVERLAP分压输出为1/16R;启动TMB且计数源为CMPO。透过设置CPIS=1,令CMP的输入端短路,将CH1上的Cref电容上的电量通过RLO接到VSS,进行完全放电;启动比较器及TMB开始计数,启动NON-OVERLAP,让VDD对touch pad 充电,由于NON-OVERLAP的开关功能,touch PAD对CH1 Cref充电,使得CH1端电压慢慢上升,当CH1端电压上升到RLO电位时,比较器输出转态CMPO=0,产生CMP中断标志位,停止TMB计数并记录TMBR计数值,与设定的TOUCH KEY计数临界值比较,若小于临界值,表示有触摸Touch Pad,反则,没有触摸Touch Pad。分别对不同的touch pad扫描。

3.4显示设置


电路MCU通过IIC与LCD Driver通讯,电路简单,操作方便,只须将数据发送给LCD driver HY2613,MCU就可以处理其他事情,且更新数据方便。

基于HY16F188的触控温度计设计方案

 

4.操作流程


一开机后,随即会显是当下温度,触摸Touch Key1会使程序进入Idle Mode,程序进入Idle Mode后,开启TimeA开始计数,每0.3S唤醒一次扫Touch Key1判断Touch Key1是否被触碰,如有则离开Idle Mode。

在显示温度情况下如按下Touch Key3,则会进入温度校正模式。

在显示温度情况下如按下Touch Key4,则会进入触控校正模式。

在温度校正模式下,一开始16F会自动抓取现在AD value并记录下来,完成后用户需透过Touch Key1、2设定现在温度,设定完成后再次触摸Touch Key3及设定完成,离开温度校正子程序。

在触控校正模式下,一开始16F会自动抓取untouch value,此时LCD会自动倒数。在倒数时切勿碰触Touch Key。当自动抓取完成后,LCD会依序出现994444、99333、99222、991111,用户需一出现数字触摸对应Touch Key。对应表如下表1

基于HY16F188的触控温度计设计方案

4.1程序流程


基于HY16F188的触控温度计设计方案

主程序流程

基于HY16F188的触控温度计设计方案

温度校正程序

基于HY16F188的触控温度计设计方案

触控校正程序
 
相关文章
 
相关资讯
中国AI产业突破封锁的韧性发展路径及未来展望

在全球科技博弈背景下,美国对华AI芯片出口限制政策持续升级。腾讯总裁刘炽平在2025年第一季度财报会上明确表示,腾讯已具备应对供应链风险的充足储备与技术创新能力,标志着中国AI产业正加速走向自主化发展道路。本文结合产业动态与政策趋势,剖析中国AI产业的战略转型与突破路径。

重塑全球供应链格局:ASM International战略布局应对贸易壁垒

在全球半导体产业链加速重构的背景下,荷兰半导体设备巨头ASM International(以下简称“ASM”)近期通过一系列战略调整引发行业关注。2025年5月15日,该公司宣布将通过转嫁关税成本、加速美国本土化生产及优化全球供应链,应对地缘政治风险与贸易壁垒。面对美国近期加征的“对等关税”政策(涵盖钢铁、汽车等商品,未来可能扩展至半导体领域),ASM展现出显著的供应链韧性:其亚利桑那州工厂即将投产,新加坡基地产能同步扩充三倍,形成“多区域制造网络”以分散风险。与此同时,中国市场成为其增长引擎——2025年中国区销售额或突破预期上限,占比达总营收的20%,凸显其在差异化竞争中的技术优势。这一系列举措不仅反映了半导体设备行业对关税政策的快速响应,更揭示了全球产业链从“效率优先”向“安全韧性”转型的深层逻辑。

国产芯片架构演进之路:从指令集适配到生态重构

在全球半导体产业长期被x86与ARM架构垄断的背景下,国产芯片厂商的生态自主化已成为关乎技术主权与产业安全的核心议题。北京君正集成电路股份有限公司作为中国嵌入式处理器领域的先行者,通过二十余年的技术迭代,探索出一条从指令集适配到生态重构的独特路径——早期依托MIPS架构实现技术积累,逐步向开源开放的RISC-V生态迁移,并创新性采用混合架构设计平衡技术过渡期的生态兼容性。这一转型不仅打破了国产芯片“被动跟随”的固有范式,更在智能安防、工业控制、AIoT等新兴领域实现了从“技术替代”到“生态定义”的跨越。据行业数据显示,其基于RISC-V内核的T系列芯片已占据计算芯片市场80%的份额,成为推动国产架构产业化落地的标杆。本文通过解析北京君正的架构演进逻辑,为国产半导体产业突破生态壁垒提供可复用的方法论。

性能飙升27%!高通骁龙7 Gen4如何改写中端芯片格局?

5月15日,高通技术公司正式推出第四代骁龙7移动平台(骁龙7 Gen 4),以台积电4nm制程打造,性能迎来全方位升级。该平台采用创新的“1+4+3”八核架构,CPU性能较前代提升27%,GPU渲染效率提升30%,并首次支持终端侧运行Stable Diffusion等生成式AI模型,NPU算力增幅达65%。在影像领域,其搭载的三重12bit ISP支持2亿像素拍摄与4K HDR视频录制,配合Wi-Fi 7与XPAN无缝连接技术,重新定义中高端设备的创作边界。荣耀与vivo宣布首发搭载该平台的机型,预计本月上市,标志着生成式AI技术向主流市场加速渗透。

破局高端芯片!小米自研玄戒O1即将发布,性能参数首曝光

5月15日晚间,小米集团CEO雷军通过个人微博账号正式宣布,由旗下半导体设计公司自主研发的玄戒O1手机SoC芯片已完成研发验证,计划于本月下旬面向全球发布。据雷军透露,该芯片将采用业界领先的4nm制程工艺,核心性能指标已接近国际旗舰水平。