基于SDH数字微波通信技术的组成、特点及应用

发布时间:2015-05-19 阅读量:992 来源: 我爱方案网 作者:

【导读】我爱方案网小编为大家主要介绍SDH数字微波通信技术的组成、特点及应用。我国地域辽阔,各地自然条件和经济发展情况差别相当大,因此,必须因地制宜的安排各种传输手段。各国的经验表明,在发生自然灾害的情况下,总是首先靠无线通信方式恢复电信业务。

一、SDH数字微波通信系统的组成

1、数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。

基于SDH数字微波通信技术的组成、特点及应用

组成此通信线路设备的连接方框图如图2所示。它分为以下几个部分:

基于SDH数字微波通信技术的组成、特点及应用

2、用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。

3、交换机。这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。这种交换可以是模拟交换,也可以是数字交换。

4、数字电话终端复用设备(即数字终端机)。其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。

5、微波站。按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。SDH微波终端站的发送端完成主信号的发信基带处理 、调制  、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收 、解调  、收信基带处理。终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。

6、数字微波中继站。主要完成信号的双向接收和转发。有调制、解调设备的中继站,称再生中继站。需要上、下话路的中继站称微波分路站,它必须与SDH的分插复用设备连接。再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。

二、SDH数字微波传输设备采用的关键技术


1、微波帧复用技术

在光纤通信系统中是采用SDH帧结构来传输数字流的,而在数字微波传输系统中,为了传输数字公务信息、旁路业务信号等, 需要在SDH复用帧结构的基础上插入一些辅助比特,因而需要在数字微波传输系统的收、发信端分别增加分、复接器,使得微波帧复用技术更为复杂。

2、编码调制技术

我国在4~11GHz频段大多采用 28~30MHz和40MHz的波道间隔配置,要在有限的频带内传送尽可能高的比特率,最有效的办法就是采用高性能高速多状态调制解调技术。因SDH传送方式的特点而决定了在传送相同话路或相同的2Mbit/s接口数的传输方式中,SDH微波所需占用的比特率要比PDH微波所需占用的比特率高l1% ~2O% 。

3、交叉极化干扰抵消(XPIc)技术

为了进一步增加数字微波系统的容量,提高频谱利用率,有两种方法可以实现。一种方法是采用512QAM或1024QAM调制方式。但因调制状态数多,对电路的线性要求高,元器件的性能敏感,对多径衰落的影响也很 严重,故技术难度大。一种方法是采用双极化频率复用技术,在每个波道中同时用垂直与水平两种极化各传一个155.52Mbit/S的SDH微波信息,使单波道数据传输速率成倍增长。

4、前向纠错技术

为避免一般的FEC技术导致的牺牲频带利用的现象发生,采用了一种新技术,即把调制和纠错编码结合起来统一设计的编码调制技术。常见的有块状编码调制(BCM)、格状编码调制(TCM)和多级编码调制(MLCM)等三种。其中BCM是各级用块状码进行调制。TCM是各级都用一种卷积码,如4D—TcM是一种四维格状编码、维特比译码的纠错方式。MLCM 方式可以利用微波帧开销(RFCOH)增加2Mbit/S的路旁业务,其编码增益比TCM稍高,并因译码操作在低速进行,故结构简单。可见,MLGM方式是一种较好的纠错方式,其次是4DTCM方式。

5、自适应频域和时域均衡技术

当系统采用多状态QAM调制方式时,要达到ITU—R所规定的性能指标,对多径衰落必须采取相应的对抗措施。在各种抗衰落技术中,除了分集接收技术外,最常用的技术是自适应均衡技术,包括自适应频域均衡技术和自适应时域均衡技术。频域均衡主要用于减少频率选择性衰落的影响,时域自适应均衡用于消除各种形式的码间干扰,可用于最小相位和非最小相位衰落,为消除正交干扰,可引进二维时域均衡器。

6、高线性功率放大器和自动发射功率控制(ATPC)技术

ATPC 即发信功率的自适应控制技术在SDH数字微波通信中得到广泛应用。SDH微波采用多状态调制技术,对传输信道,特别是高功率放大器的线性提出了严格的要求。SDH微波系统还要采用自动发信功率控制(ATPC)技术。该技术的要点是微波发信机的输出功率在ATPC的控制范围内自动跟踪接收端接收电平的变化而变化。当发生传播衰落时,接收机检测到传播衰落并达到ATPC所规定的最低接收电平时,立即通过微波段开销(RFSOH)字节控制对方发信机提高发信功率,直到发信机功率达到额定功率后,若对方接收电平仍继续下降,则发信机输出功率则维持在额定输出功率上不再变化。

ATPC主要优点是:(1)降低了对相邻系统的干扰;(2)减小了上衰落对系统的影响;(3)降低了电源消耗,使射频放大器的功耗相当于正常电平时的50%;(4)改善了系统的残余比特差错性能。由于发信机在ATPC控制下使大部分正常传输条件下用最小。

三、SDH微波通信系统的特点


1、使1.5Mbit/s和2Mbit/s两大数字体系在STM-1等级上获得统一。数字信号在跨越国界通信时,不再需要转换成为另一种标准,第一次真正实现了数字传输体制上的世界性标准。

2、采用了同步复用方式和灵活的复用映射结构。各种不同等级的码流在帧结构净负荷内的排列是有规律的,而净负荷与网络是同步的,因而只需要利用软件即可使高速信号一次直接分插出低速支路信号即所谓的一步复用特征 。利用同步分插能力还可以实现自愈环形网,改进网络的可靠性和安全性。

3、SDH帧结构中安排了丰富的开销比特,因而使得网络的OAM能力大大加强。 由于SDH中的DXC和ADM等一类网元是智能化的,通过嵌入的控制通路可以使部分网络管理能力分配到网元,实现分布式管理,使新特性和新功能的开发变得比较容易。

4、由于将标准光接口综合进各种不同的网元,减少了将传输和复用分开的需要,从而简化了硬件,缓解了布线拥挤。

5、由于用一个光接口代替了大量电接口,因而SDH网所传输的业务信息可以不必经由常规同步系统所具有的一些中间背靠背电接口而直接经光接口通过中间节点,省去了大量的相关电路单元和跳线光缆,使网络的可用性和误码性能都获得改善。而且,由于电接口数量锐减导致运行操作任务的简化以及设备种类和数量的减少,使运营成本减少20%~30%。

6、SDH网与现有网络能完全兼容,即可以兼容现有准同步数字体系的各种速率。同时,SDH网还能容纳各种新的业务信号,使之具有完全的向后兼容性和向前兼容性。

综上所述,SDH最核心的特点是同步复用,标准的光接口及强大的网管功能。

而SDH作为一种新的技术体制,还存在一些缺陷,主要表现在:

1、频带利用率低

有效性和可靠性是一对矛盾,增加了有效性必将降低可靠性,增加可靠性也会相应的使有效性降低。SDH的一个很大的优势是系统的可靠性大大的增强了 ,这是由于在SDH的信号--STM-N帧中加入了大量的用于OAM功能的开销字节,这样必然会使在传输同样多有效信息的情况下,PDH信号所占用的频带(传输速率)要比SDH信号所占用的频带(传输速率)窄,即PDH信号所用的速率低。

2、指针调整机理复杂

SDH体制可从高速信号中直接下低速信号,省去了多级复用/解复用过程。而这种功能的实现是通过指针机理来完成的,指针的作用就是时刻指示低速信号的位置,以便在“拆包”时能正确地拆分出所需的低速信号,保证了SDH从高速信号中直接下低速信号的功能的实现。可以说指针是SDH的一大特色。但是指针功能的实现增加了系统的复杂性。

3、软件的大量使用对系统安全性的影响

SDH的一大特点是OAM的自动化程度高,这也意味软件在系统中占用相当大的比重,这就使系统很容易受到计算机病毒的侵害,特别是在计算机病毒无处不在的今天。另外,在网络层上人为的错误操作、软件故障,对系统的影响也是致命的。这样系统的安全性就成了很重要的一个方面。所以设备的维护人员必须熟悉软件,选用可靠性较高的网络拓扑。

四、SDH微波在SDH电信网中的应用


微波作为三大传输手段之一也在SDH网中起着重要作用。尽管光纤传输网在容量方面有微波无法比拟的优点,但不管是通信干线上还是支线,SDH微波网仍然是光纤网不可缺少的补充和保护手段。SDH微波网可以利用现有模拟或PDH微波网的基础设施进行建设。其主要应用有下列几种:用SDH微波系统使光纤电信网形成闭合环路;与SDH光纤系统串接使用;作为SDH光纤网的保护,以解决整个通信网的安全保护问题;自成链路或环路。

基于SDH数字微波通信技术的组成、特点及应用

五、工程综合应用网图


在许多通信系统工程设计的建设过程中,不可避免地要考虑到已有系统的再利用因素,以及不同型号设备的兼容问题,SDH数字微波通信系统在此方面具有独有的优势。它不仅具有光纤级传输性能及全面的网络管理性能,还包括一个开放的系统结构,能方便地实现不同型号的ADM(上、下话路复用器)之间的切换和交叉互连。其综合应用(典型)网络链接如图3所示。

基于SDH数字微波通信技术的组成、特点及应用

同时在某些应用场合,如连接到卫星地球站、移动通信网基站及其专用网,以及连接到广大农村及偏远的厂矿等,还是用微波作为传输手段比较灵活方便,而且,其性能价格比也十分理想。所以,我国在大力发展光纤干线传输网的同时,也十分注意发展建设SDH数字微波通信网。原邮电部已决定在“九五”至“十五”期间新建30条左右的国家一级干线数字微波电路,总长约30000km。

相关文章

基于VaaS、融合通信、BYOD的视频通信发展新趋势

通信电源监控系统的设计与实现——DS80C320

通信网络和系统协议中的IEC61850标准变电站
相关资讯
半导体产业升级战:三星电子新一代1c DRAM量产布局解析

在全球半导体产业加速迭代的背景下,三星电子日前披露了其第六代10纳米级DRAM(1c DRAM)的产能规划方案。根据产业研究机构TechInsights于2023年8月22日发布的行业简报,这家韩国科技巨头正在同步推进华城厂区和平泽P4基地的设备升级工作,预计将于2023年第四季度形成规模化量产能力。这项技术的突破不仅标志着存储芯片制程进入新纪元,更将直接影响下一代高带宽存储器(HBM4)的市场格局。

蓝牙信道探测技术落地:MOKO联手Nordic破解室内定位三大痛点

全球领先的物联网设备制造商MOKO SMART近期推出基于Nordic Semiconductor新一代nRF54L15 SoC的L03蓝牙6.0信标,标志着低功耗蓝牙(BLE)定位技术进入高精度、长续航的新阶段。该方案集成蓝牙信道探测(Channel Sounding)、多协议兼容性与超低功耗设计,覆盖室内外复杂场景,定位误差率较传统方案降低60%以上,同时续航能力突破10年,为智慧城市、工业4.0等场景提供基础设施支持。

财报季再现黑天鹅!ADI营收超预期为何股价暴跌5%?

半导体行业风向标企业亚德诺(ADI)最新财报引发市场深度博弈。尽管公司第三财季营收预期上修至27.5亿美元,显著超出市场共识,但受关税政策驱动的汽车电子产品需求透支风险显露,致使股价单日重挫5%。这一背离现象揭示了当前半导体产业面临的复杂生态:在供应链重构与政策扰动交织下,短期业绩爆发与长期可持续增长之间的矛盾日益凸显。

全球可穿戴腕带市场首季激增13%,生态服务成决胜关键

根据国际权威市场研究机构Canalys于5月23日发布的调研报告,2025年第一季度全球可穿戴腕带设备市场呈现显著增长态势,总出货量达到4660万台,较去年同期增长13%。这一数据表明,消费者对健康监测、运动管理及智能互联设备的需求持续升温,行业竞争格局亦同步加速重构。

RP2350 vs STM32H7:性能翻倍,成本减半的MCU革新之战

2025年5月23日,全球领先的半导体与电子元器件代理商贸泽电子(Mouser Electronics)宣布,正式开售Raspberry Pi新一代RP2350微控制器。作为RP2040的迭代升级产品,RP2350凭借双核异构架构(Arm Cortex-M33 + RISC-V)、硬件级安全防护及工业级性价比,重新定义了中高端嵌入式开发场景的技术边界。该芯片通过多架构动态切换、可编程I/O扩展及4MB片上存储等创新设计,解决了传统微控制器在实时响应能力、跨生态兼容性与安全成本矛盾上的核心痛点,为工业自动化、消费电子及边缘AI设备提供了更具竞争力的底层硬件方案。