浅谈汽车电池管理系统(BMS)的应用保护

发布时间:2015-12-25 阅读量:1469 来源: 我爱方案网 作者: AEM科技 郭田青

【导读】电池管理系统(BMS)主要功能就是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,延长电池的使用寿命,监控电池的状态。本文主要结合过流过压成功应用案例,围绕电池管理系统(BMS)的安全设计,进一步说明AEM FUSE/PPTC/TVS被动保护元件的应用。

什么是BMS?
 
电池管理系统(BMS)主要功能就是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,延长电池的使用寿命,监控电池的状态。
 
电动汽车的BMS系统较为复杂,实现功能要求更多,如对电动汽车的动力电池参数进行实时监控、故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等,并通过CAN总线的方式与车辆集成控制器或充电机进行信息交互,保障电动汽车高效、可靠、安全运行,并保证在车辆使用过程中的安全。总之,慨括起来就是三个基本功能:

1)准确估测动力电池组的荷电状态;
2)动态监测动力电池组的工作状态;
3)单体电池间的均衡。
 
本文主要结合过流过压成功应用案例,围绕BMS的安全设计,进一步说明AEM FUSE/PPTC/TVS被动保护元件的应用。

BMS 技术原理图

图1:BMS原理框图

BMS 单元电路的保护应用
 
如上图1,一般电动汽车BMS均包含有数据采集、均衡单元,控制单元,CAN通信单元和显示单元等。
 
在产品设计之初,必须要符合车用ISO26262标准,通过EMC测试。 为避免单元模块之间出现短路、过载、浪涌以及静电冲击,这就要在各功能单元选择FUSE 、TVS、PPTC等元件来进行保护线路的功能和安全。

1)主控制单元BMU的电源输入保护

图2:DC in位置的过流保护

 
目前常用的规格有1~3A,推荐SolidMatrix HI Series Fuse保护。部分厂商采用1颗PTC进行过流防护。

2)从控制器BCU的保护
 
由于各BMS厂家的方案技术有所不同,BCU模块包含数据采样单元和均衡电路等。 该部分基本直接与动力电池组相连,类似如下的连接示意图:

图3:检测板与电池模组pin to pin 连接

 
任何线路的直接短路都会造成电池直接短路,对车辆和人身安全造成危害,故对功能的安全性要求非常高。
 
业界常见的保护方案主要对采样板的每条电压检测线和均衡线上各串接1颗 fuse,防止线与线之间因各种不可控因素造成短路。
 
例如下图:

图4:单个BMU的fuse用量,与其控制的电池节数有关

 
目前,市场上乘用轿车对电池组的要求是满足300V以上才能驱动电机工作,若单颗电池电芯约3.3V,即至少需要100颗电芯组成的多个电池组才能满足要求,按此对应的每颗电芯有两条检测线,故 fuse*2约200颗/车的用量;按此类推,电动大巴的BMS也类似此保护,其驱动电压在500~600V不等,fuse用量超过400颗/车。
 
在选型fuse时,了解到采样电流很小只有mA级,常用的电流规格有1206 FA 0.5A/ 0603 HI 1A,均衡线路又有主被动之分,电流存在变化,规格1~5A均有选择 。
 
我们认为,在实际选型时,应充分考虑温度的影响,fuse的分断能力在线束短路时承受能力,在采样线路上,fuse DCR内阻的影响等。
 
总体来说,BMS置于电动汽车内部,靠近电池组相连,夏天空间温度会对PTC的工作状态存在较大影响,IT电流变小,触发动作。AEM SolidMarix 陶瓷保险丝具备较好的耐温特性,故适合侦测板等位置的过流保护。

3)CAN总线的过流、浪涌、静电防护
 
BMS中,各单元模块之间通信,完成信息的传递。主要采用CAN bus接口协议。为了防止CAN bus在实际应用中偶然出现的发送输出级对电源及地或负载短路及瞬态电压干扰等现象,在设计过程中,有客户采用fuse或PPTC串联和TVS并联组成保护电路,保护各种短路和其他过电流的情形,考虑CAN bus的通用性,其工作电流通常为几十mA,通常选用低安培电流规格即可满足要求,也可以推荐AEM TF 系列低安培规格fuse。

图5:CAN总线接口的防护

 
上述保护器件中,HSP(AEM高能保护器)可以替代常见的GDT,防浪涌保护,常用为HSP1206SN/HSP1210 SN系列,颇具性价比优势。
 
TVS器件考虑数据传输速率的要求,TS04021C系列低容值的优势十分适合CAN线的数据传输。
 
fuse应用防浪涌型,常用F1206HI 0.5~1A。

结论 
 
当今社会人们对严重的环境污染和气候变化问题的担忧,世界各国纷纷把发展可再生能源与新能源,作为未来能源战略的重要组成部分。由于环境形势的压力和国家政策的支持,电动汽车在能源多元化、动力电气化、排放洁净化的优点,具有较广阔的发展前景。
 
AEM产品实现完全表贴化,在BMS实际应用中也以线路接口位置为主,十分契合客户的操作要求,在保障客户BMS产品功能和安全性上有着非常高的性价比优势。

推荐阅读:

动力电池管理系统保护设计方案
电动自行车的奔跑指南——电池管理系统设计方案
智能电池CAN总线镍氢电池管理系统设计方案

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"