芯片封装、PCB设计更简单的方案——新一代系统设计

发布时间:2016-01-20 阅读量:756 来源: 我爱方案网 作者:

【导读】随着如今 SoC 复杂程度的不断增加,以及多芯片封装的发展,各公司已开始认识到 IC、封装基底和 PCB 设计组之间交叉领域协作的价值。由于高管脚数目器件具有成本敏感性这一特点,工程师不得不重新考虑在对复杂的 IC 封装变量进行折衷的同时,如何规划和优化芯片的 I/O 布局。

大多数情况下,现代电子系统设计包括设计各种元器件或者彼此隔离度较近的系统。IC 的设计和管脚输出是由芯片上的电路位置决定的。封装设计师采用“扔过墙”的芯片设计,并尽可能设计较短的封装键合线,从而使封装尽可能小。然后 PCB 设计师,通常一直怨声载道,拿起封装 IC,绞尽脑汁找出布线信号的方法,而这看上去总像是错放在某个管脚或焊球上。

随着如今 SoC 复杂程度的不断增加,以及多芯片封装的发展,各公司已开始认识到 IC、封装基底和 PCB 设计组之间交叉领域协作的价值。由于高管脚数目器件具有成本敏感性这一特点,工程师不得不重新考虑在对复杂的 IC 封装变量进行折衷的同时,如何规划和优化芯片的 I/O 布局。并且针对多个板级平台进行所有这些工作。现在,各种工具的出现让封装和 PCB 的设计成为一个合作、相互受益的过程。

认知设计

要最大程度地发挥作用,EDA 工具应当清楚知道会在其他过程中用到的工具。在封装和PCB 设计领域,相互之间的认识很少。诚然,FPGA 管脚输出可以在一定范围内由用户定义,但“标准”元件一般没有这样的选项。

让工具清楚设计及产品设计到工艺流程中的其他环节,这些工具就能在更短的时间内合作并交付出更好的系统设计。此外,标准 IC 芯片能以不同方式封装,这取决于终端产品的外形参数,从而为各种方式实现更为优化的解决方案。

工具之间如何快速地进行相互认知,然后合作交付出更优的设计呢?使用相同 CPU 芯片的智能手机和平板电脑的设计便可以完美地说明这一模式。显然,许多移动设备公司正在进行这样的尝试。

然而,相比智能手机,平板电脑的PCB基板上可用面积显然更大,其约束也更少。因此,平板电脑上的 CPU 封装可能更大,有不同的管脚输出,或者可能比智能手机上的 CPU 功耗更大功率。因此,单个“标准”封装可能并非最佳应用封装(图 1)。

平板电脑设计可能有更多可用的基板面积布局 CPU 和胶接电路,使上层封装进行运作。但对于使用相同 CPU 的智能手机而言,这种方式空间要求过大,因此更好的解决方案是使用下层封装。

图 1:平板电脑设计可能有更多可用的基板面积布局 CPU 和胶接电路,使上层封装进行运作。但对于使用相同 CPU 的智能手机而言,这种方式空间要求过大,因此更好的解决方案是使用下层封装。

现在,使用新工具,设计师能配置芯片,从封装的视角“看看”设计,再转移到 PCB(传统方法),或先了解 PCB 设计要求,再返回到封装设计中。而且,他们能拿到每个使用该 CPU 的产品,再从 PCB 回过头来设计专门为此进行设计优化的最佳封装。

从封装观点来看,物理设计规则由 PCB 设计要求决定。然后,工具与规则和封装设计师交互合作,交付出适用于该芯片特定应用的最佳封装。这种相对较快的封装设计方法还能探索不同的创意,以快速找到最佳方案。

真实案例

图 2 为假定的产品设计。在这个例子中,最终产品的外形参数已知,元器件也已进行初步布局。注意顶部的说明,已预留布局 CPU 的位置。使用这种输入,工具可以开始路径查找,即基于 PCB 设计师和封装设计师编写的规则,尝试多种封装配置。

通常,物理外形参数是产品设计的主要约束。使用路径查找工具,封装和 PCB 设计师能协作找到物理设计约束内的最佳封装,并可简化复杂封装的扇出和布线。

图 2:通常,物理外形参数是产品设计的主要约束。使用路径查找工具,封装和 PCB 设计师能协作找到物理设计约束内的最佳封装,并可简化复杂封装的扇出和布线。

对于每种设计,可以在 PCB 上进行传统布线,以决定最佳的封装和管脚输出。规则允许设计师定义各种参数,如未使用的输出拐角管脚,让差分对连在一起,分配电源和接地的方法,以及处理数据和地址总线的方法等。

一旦确定规则,就不只是“按下按钮再坐回去”,而是比使用电子表格和管脚列表更加直接、更加快速、更加准确,这就是现状。

优点

工具认知设计具有显著的优点,并且其能够在任何设计领域中进行设计优化。首先,其能更加容易地定制多个封装设计,以便按照所需的外形参数最佳地利用给定的元器件。然后从多个“假设分析”情境审视设计,如更小的封装、更少的成本、最简单的扇出和出口等。其次,由于存在大量管脚,利用电子表格和管脚列表进行封装设计就显得力不从心。当人工输入数以百计的管脚数据时,错误率几乎为 100%。当然,其优点还包括:质量的提高、获得适合外形参数的最佳封装、错误的减少以及在整个系统设计中节省大量的时间。

相关阅读:

创客课堂|PCB设计彻底解决电源散热问题的绝招!

揭秘手机PCB设计RF部分的布局技巧
 

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"