基于热电偶的测温仪表冷端补偿方法分享

发布时间:2016-03-22 阅读量:1085 来源: 我爱方案网 作者:

【导读】文中以热电偶工作原理为基础,由PT1000测量冷端温度,通过A/D转换后由MCU传给上位机,将电阻值通过软件换算成电压值加到热电偶的电压上,再通过补偿块消除冷端温度变化带来的影响,从而进行补偿。试验表明,该方法不仅测量精度高,且工作稳定。

 热电偶是一种常用的温度传感器,是利用热电效应,并根据冷热端温度差产生的热电动势测量温度,且具有测量精度高、构造简单、使用方便等优点。在测温仪表中得到了广泛应用。通用的冷端补偿方法由于其结构复杂,噪声大,线性度差会对测量结果造成较大的影响。

1 通用热电偶冷端补偿方法

1.1 电桥补偿法的原理

如图1所示,其中R1,R2,R3的阻值相等,用温度系数近似为零的锰铜制造,即其阻值不随温度的变化而变化,而Rt用热电阻PT1000,其与热电偶冷端处于同一温度场中,其阻值随温度变化而变化,温度升高,阻值增加当冷端温度为零时R1=R3=R2=R1,可使得电桥的输出为零,若冷端温度升高,会使得热电偶的热电势减小而带来测量误差,但此时PT1000的阻值也会随温度升高而增加,则补偿电桥失去平衡,输出值不为零,电桥输出量的变化值与热电偶热电势变化量相等,且二者变化方向相反,则二者相互抵消使总输出量的大小不随冷端温度的变化而变化。
 

图1:电桥补偿法示意图

1.2 实验数据记录

实验过程中用毫伏电压发生器模拟K型热电偶热电势,在电路板上完成A/D转换后,通过MCU上传上位机,由上位机将A/D值换算为温度并显示。实验结果如表1所示。
 

表1:电桥法数据记录

 
这种方法对R1,R2,R3的精度要求很高,且V+的噪声,温漂要小,稳定性要高,为达到实验要求需要使电桥电流为一个合适值,调试难度高。在进行多路测量时,需要布置多路装置,结构较为复杂。

2 热电偶冷端补偿的新方法

2.1 原理

该方法由PT1000测量冷端温度,通过A/D转换后,由MCU传给上位机将电阻值通过软件换算成电压值加到热电偶的电压上再通过补偿块消除冷端温度变化带来的影响,从而进行补偿。

2.2 补偿块的设计

此方法进行冷端补偿的主要装置是一块导热性能良好的铝块,其结构如图2所示。
 

图2:补偿块示意图

 
在长方体铝块的横向中轴线上依次等距打出3个通孔,并沿横向中轴线切开。在之后的接线过程中将两根补偿导线压如左右两个通孔,中间的通孔压入热电阻PT1000。在压入过程中为保证热传导的均匀性,热电阻和补偿导线的直径要一致且与补偿块充分接触,绝缘材料要相同。

2.3 补偿电路设计

如图3所示,热电偶通过补偿导线接到仪表箱内的补偿块之后再通过Cu导线连接箱内电路板。补偿块与热电偶冷端处于仪表箱内。PT1000用于测量仪表箱内温度To,Tc是仪表箱外的环境温度。
 

图3:补偿块法示意图

 
由于程序设计要求,在未接补偿电路时上位机显示温度T1为A处的实际温度Tr加上箱内的温度Tb,即T1=Tr+Tb。仪表在实际使用当中温度箱内温度会产生变化要避免箱内温度的变化对实际测量温度的影响,设计接入补偿电路。

当仪表箱内温度升高,会使上位机显示温度T1随箱内温度升高,在加入补偿电路后,补偿块在箱内受热均匀,补偿导线两端与PT1000处于同一温度场中,补偿导线产生的电压可以抵消掉冷端温度变化带来的影响,保证了测量值不受箱内温度变化的影响,只与箱外环境温度Tc有关,即T1=Tr+Tc。

2.4 实验数据记录

实验过程与电桥法实验过程类似,用毫伏电压发生器模拟K型热电偶热电势,在电路板上完成A/D转换后,通过MCU上传上位机,由上位机将A/D值换算为温度并显示。实验结果如表2所示。
 

表2:补偿块法数据记录

 
从上表可看出,该补偿方法具有较高的准确度,误差在1℃以内且线性度好,在进行多路测量时只需在补偿块上多加几组通孔即可,结构简单可满足工业应用需求。

3 补偿块法与电桥法的数据对比分析

根据表1和表2中的数据,文中以输入电压为横坐标,误差值为纵坐标分别做出两种方法在不同温度下的误差曲线,如图4和图5所示。
 

图4:补偿块法误差曲线

 

图5:电桥法误差曲线

 
图5中曲线可看出,电桥法的线性度较差,由于热电偶的输入输出特性和补偿电桥的输出特性均是非线性特性且不重合,故在补偿范围内只有在两条曲线相交点对应的冷端温度下能完全补偿即无补偿误差,其他冷端温度下只能部分补偿,存在补偿误差。在实际使用当中需要使用更复杂的电路来减少由于非线性所产生的误差。

从图4补偿块法的4条曲线可看出,其最大误差不超过1℃且线性较好,能更准确地达到测量要求。

4 结束语

本文所述基于热电偶的测温仪表冷端补偿方法电路简单、稳定、噪声小,且线性度好。其在进行多路测量时只需在补偿块上多打几个通孔将补偿导线压入其中即可,在控制成本的前提下保证了测量的精度,达到了技术指标。

推荐阅读:

简易外设的热电偶测量仪解决方案

基于ADI ADuCM360 的热电偶测量仪方案

相关资讯
英伟达市值突破4万亿美元 登顶全球AI芯片霸主地位

当地时间周三,英伟达股价盘中触及164.42美元的历史高点,推动其市值首次突破4万亿美元大关,成为全球首家达成此里程碑的企业。截至收盘,公司股价上涨1.80%,市值达3.97万亿美元,进一步奠定其人工智能硬件领域核心地位。

TCL科技2025年上半年业绩预增:显示业务强势驱动,光伏板块承压前行

7月9日,TCL科技发布2025年半年度业绩预告。报告期内,公司预计实现营业收入826亿元至906亿元,较去年同期增长3%至13%;归属于上市公司股东的净利润达18亿元至20亿元,同比大幅上升81%至101%,核心业务盈利能力显著增强。

西部电子信息博览会启幕,聚力成渝打造世界级产业集群​​

7月9日,成都迎来第十三届中国(西部)电子信息博览会的盛大启幕。本届博览会紧扣“新动能、新生态、新西部”主题,在国家战略引领下,聚焦培育新质生产力,深化成渝双城产业协同,通过展示前沿成果、分享发展理念、促进生态合作,加速推动成渝地区电子信息先进制造集群向世界级跃升,倾力打造中国电子信息产业高质量发展的关键引擎。

解密伍尔特电子高温LED:PLCC封装实现100℃全彩照明方案

在工业4.0和智能制造的浪潮下,高温环境中的电子照明技术面临严峻挑战。传统LED在温度超过85°C时容易出现性能衰减、颜色漂移及寿命缩短等问题,限制了其在自动化设备、医疗仪器等关键领域的大规模应用。针对这一痛点,伍尔特电子(Würth Elektronik)通过创新研发,升级了其WL-SFTW SMT全彩高透明LED系列,引入全新RGB LED产品。这些器件将工作温度范围扩展至前所未有的-40°C至+100°C,显著提升了高温工况下的可靠性和色彩稳定性,不仅克服了行业瓶颈,还为工业、户外及特种场景开辟了创新空间。本系列产品的推出,标志着高温LED技术向高端应用迈进的里程碑,满足了对耐热、节能且可变色照明的迫切需求。

华硕高管谈关税不确定性对PC市场的冲击策略

华硕联席CEO许先越近期发表了关于美国对中国台湾地区关税政策影响的评论。他强调,当前美国对台湾关税的税率尚未正式公布,华硕已探讨了多种应对预案,但最终策略调整将取决于税率的具体确定。因此,公司目前采取“观望”态度,暂不进行重大行动。许先越指出,这一不确定性结合汇率波动,使得2023年下半年全球PC市场的走势难以准确预测,公司将密切监控外部环境变化。