英特尔扬长避短,计划用CPU来做人工智能

发布时间:2016-09-30 阅读量:2334 来源: 我爱方案网 作者:

【导读】Intel声称,目前全世界有97%支持机器学习的服务器都是采用Xeon/Xeon Phi芯片,但这些服务器占据全球服务器的比例不到10%;不过Intel也表示,机器学习是成长速度最快的AI应用,因此该公司准备好以Nervana的Engine芯片为基础的深度学习神经网络,找回因GPU竞争而流失的市占率。

Intel在高性能运算(high-performance computing,HPC)市场居主导地位,Nvidia则以其复杂GPU在深度学习领域有大幅进展;而Nervana Systems的GPU则是以兼容于Nvidia的Cuda软件与自家Neon云端服务在市场获得关注。

Intel收购Nervana的目标在于取得其预计2017年问世的深度学习加速器芯片,如果该芯片的性能表现如预期,Intel的深度学习加速器硬件开发板可望超越Nvidia的GPU开发板,同时收购自Nervana的Neon云端服务之性能表现也将超越Nvidia的Cuda软件。

“通过这次并购,Intel给了Nvidia一记重击,”市场研究机构Moor Insights & Strategy的深度学习暨高性能运算资深分析师Karl Freund接受EE Times访问时表示:“但这是进军一个成长非常快速的市场之合理策略。”

Freund进一步解释:“GPU是训练深度学习神经网络的一个热门方法,Nvidia在该领域是领导厂商;Intel则有自己的多核心Xeon/ Xeon Phi处理器,以及收购自Altera的FPGA,却没有GPU。收购Nervana是以一个非复制通用GPU策略进军深度学习市场的方法,也就是透过提供为神经网络量身打造的特制处理器。”

Nervana指令周期号称可达每秒8 terabit的Engine芯片,是一款以硅中介层(silicon-interposer)为基础的多芯片模块,配备terabyte等级的3D内存,环绕着3D花托状架构(torus fabric)、采用低精度浮点运算单元(FPU)的链接神经元;因此Freund指出,该芯片与竞争通用GPU相较,能以更小的尺寸支持每秒更多次数的深度学习运算。

英特尔扬长避短,计划用CPU来做人工智能?
Nervana 的Engine芯片架构

Freund表示:“深度学习神经网络能摆脱通用GPU在理论上过度夸大的较低精度运算;虽然Nervana的芯片要到明年才问世、因此目前并没有公布任何性能量测基准数据,但为深度学习神经网络量身打造的特殊应用芯片,性能应该会超越在通用GPU的相同算法。”

Intel声称,目前全世界有97%支持机器学习的服务器都是采用Xeon/Xeon Phi芯片,但这些服务器占据全球服务器的比例不到10%;不过Intel也表示,机器学习是成长速度最快的AI应用,因此该公司准备好以Nervana的Engine芯片为基础的深度学习神经网络,找回因GPU竞争而流失的市占率。

针对Nervana的收购,Intel执行副总裁暨数据中心事业群总经理Diane Bryant在一篇博客文章中表示:“人工智能正在转变商业运作以及人们参与世界的模式,而它的子集──深度学习,是扩展AI领域的关键方法。

据了解,Intel将把Nervana的算法纳入Math Kernel Library,以与其产业标准架构整合;此外收购Nervana将让Intel取得Neon云端服务,因此为旗下的云端服务增加支持Nvidia深度学习技术的产品。

Freund表示,Nvidia若要维持竞争力,可能也需要以低精度特制深度学习处理器来响应Intel+Nervana。目前Nervana的团队有48位工程师与管理阶层,将归入Bryant负责的Intel数据中心事业群(Data Center Group)。


相关资讯
新能源汽车的“核心系统”:深度解析大三电与小三电技术体系

本文将从技术原理、系统架构及工程实现角度,全解剖析新能源汽车的大三电和小三电系统

从汽车电子到多元工业应用:CAN总线技术解析与发展趋势

CAN总线技术通过单一总线替代复杂布线系统,极大提高了系统的可靠性与可维护性

窥见电池灵魂:BMS数据采集如何成为电动时代的神经末梢

数据采集的精度和可靠性,直接决定了整个BMS系统性能的天花板

强强联合!英伟达50亿入股英特尔

英伟达投资50亿入股英特尔股票

​温补晶振(TCXO)核心技术解析:8大关键参数决定系统时序精度​

在高速通信、精准导航与精密测量等尖端领域,电子系统的时序架构对时钟信号稳定性的要求已近乎苛刻——其精度如同机械钟表的游丝摆轮,微小偏差便可能引发整个系统的时序紊乱,导致数据传输错误、定位偏移或测量失准。环境温度的波动一直是普通晶振频率稳定性的最大挑战,而温补晶振(Temperature Compensated Crystal Oscillator,简称TCXO)作为高精度时钟基准的核心器件,正是为解决这一核心问题而生。它凭借内置的“感知-计算-补偿”机制,在宽温环境下实现对频率的精准锁定,将温度变化引发的漂移压制在极低水平,成为高端电子系统中不可或缺的“时序锚点”。要真正理解并选型这一精密器件,就必须深入剖析其决定性能优劣的几个重要参数。