四大无线充电技术对比(含厂商方案)

发布时间:2016-12-16 阅读量:8012 来源: 我爱方案网 作者: candytang

随着物联网、可穿戴和智能硬件的发展,需要充电的设备越来越多,我们开始厌倦杂乱的一堆充电线和需要频繁充电的电池。无线充电的优势远远不止于摆脱线缆的束缚。当前市场上各种各样的近场、远场充电无线技术,其中包括感应式、谐振式、超声及红外线充电等等,这些技术都需要遵循不同的标准,也需要不同程度的折中。现如今都有哪些常见的无线充电方式及解决方案呢,本文带你一同探讨。

目前主流的无线充电方式有四种:


1、无线充电联盟(WPC)推出Qi标准:电磁感应无线充电方式

2、A4WP与PMA合并后的AirFuel Alliance(国际无线充电行业联盟):磁共振方式

3、无线电波式充电方式

4、电场耦合式无线充电


这四种无线充电方式的技术优势对比如下图:


国外研发无线充电技术(包括芯片/方案/发射接收器件)的企业主要包括了IDT、TI、Freescale、高通、博通、安森美、Maxim、凌力尔特、NXP、ST、Intel(今年五月已关闭该业务)、Fulton、Witricity、PowerbyProxi(三星投资)、Energous、Delphi、松下、东芝、罗姆、富士通、瑞萨、理光等。

国内则有中惠创智、新页、中兴、劲芯微、美嗒嗒、微鹅、斯普奥汀、华润矽科、新捷、伏达、欢喜科技以及台湾凌阳、新唐、联发科、技领、立锜、盛群等。


一、无线充电联盟(WPC)推出Qi标准:电磁感应方式,2008年12月成立。




原理:电流通过线圈,线圈产生磁场,对附近线圈产生感应电动势,产生电流
传输功率:数W-5W
传输距离:数mm-数cm
使用频率范围:22KHz
充电效率:80%
优点:适合短距离充电;转换效率较高
限制:特定摆放位置,才能精确充电;金属感应接触会发热

具体方案有如下:


1、Qi标准 | TI 无线充电方案

2、Qi标准|Toshiba无线充电方案

3、Qi兼容无线充电解决方案

4、用于低功耗可穿戴应用的符合 Qi (WPC) 标准的无线充电器

5、成本17元,电磁感应式智能无线充电器方案


二:A4WP与PMA合并后的AirFuel Alliance(国际无线充电行业联盟):磁共振方式,2015年11月成立。
注:
A4WP(无线能源联盟)推出Rezence标准:磁共振,2012年5月成立;
PMA(电力联盟)推出PMA标准:电磁感应方式。



原理:发送端能量遇到共振频率相同的接收端,由共振效应进行电能传输
传输功率:数KW
传输距离:数cm-数m
使用频率范围:13.56KHz
充电效率:50%
优点:适合远距大功率充电;转换效率适中
限制:效率较低;安全与健康问题

具体方案有如下:


1、英特尔牵手海尔推A4WP标准无线充电方案

2、意法半导体与WiTricity合作开发谐振无线电能传输芯片




三、无线电波式


原理:将环境电磁波转换为电流,通过电路传输电流传输功率:大于100mW

传输距离:大于10m

使用频率范围:2.45KHz
充电效率:38%
优点:适合远距离小功率充电;自动随时随地充电
限制:转换效率较低;充电时间较长
解决方案商:Powercast等

具体方案有如下:


1、AirVolt无线充电器
AirVolt是一款利用无线电波给移动设备进行充电的无线充电器。和同类型产品一样,它的效率要比有线充电低一些。AirVolt充电头通电后可以将电能转化为电磁波,接收器获取后会将电磁波又转化为电能为手机充电。当电量充满到80%时就会自动停止充电,低于20%时又会自动充电,既保证了手机最佳电量又不会导致过度充电,增加了电池使用寿命。



AirVolt由 TechNovator公司开发,需要充电时只要将接收器插进手机,再将充电头插上插座就能进行远程无线充电。最佳充电距离是9米之内,而最远距离可达12米,躲到屋里任何一个角落都能充电!接收器和充电头体积都足够小,充电速度就比普通充电器慢一些。有Lightning 或 Micro usb两种接口选择,满足不同需要。

四、电场耦合式


原理:利用通过沿垂直方向耦合两组非对称偶极子而产生的感应电场来传输电力
传输功率:1W-10W
传输距离:数mm-数cm
使用频率范围:560-700KHz
充电效率:70%-80%
优点:适合短距离充电;转换效率较高;发热较低;位置可不固定
限制:体积较大;功率较小
解决方案商:Murata村田制作所等


此外,无线充电技术还有WattUp无线充电、WiFi无线充电(十米距离)、超声波无线充电(5米)、红外光充电系统等新型充电技术,此处就不一一列举了。

相关资讯
强强联合!英伟达50亿入股英特尔

英伟达投资50亿入股英特尔股票

​温补晶振(TCXO)核心技术解析:8大关键参数决定系统时序精度​

在高速通信、精准导航与精密测量等尖端领域,电子系统的时序架构对时钟信号稳定性的要求已近乎苛刻——其精度如同机械钟表的游丝摆轮,微小偏差便可能引发整个系统的时序紊乱,导致数据传输错误、定位偏移或测量失准。环境温度的波动一直是普通晶振频率稳定性的最大挑战,而温补晶振(Temperature Compensated Crystal Oscillator,简称TCXO)作为高精度时钟基准的核心器件,正是为解决这一核心问题而生。它凭借内置的“感知-计算-补偿”机制,在宽温环境下实现对频率的精准锁定,将温度变化引发的漂移压制在极低水平,成为高端电子系统中不可或缺的“时序锚点”。要真正理解并选型这一精密器件,就必须深入剖析其决定性能优劣的几个重要参数。

汽车BMS技术:动力电池的“智慧守护者”,全维度解密其核心优势与应用场景

本文将深入剖析汽车级BMS的核心技术优势及其广泛的关键应用场景

工业检测为何必须用工业相机?普通相机的四大核心短板解析

工业相机是根据工业检测的特殊需求进行深度优化与强化的专业设备

贸泽开售Renesas Electronics RA8P1微控制器 为先进AI提供高CPU性能

Renesas Electronics RA8P1微控制器可提供超过7,300 CoreMarks的CPU性能,以及在500 MHz时256 GOPS的AI性能