谷歌开源大规模词义消歧语料,有望解决“AI 完全问题”

发布时间:2017-01-25 阅读量:871 来源: 我爱方案网 作者: cywen

理解文本中特定单词的不同含义对于语言的理解是一个关键。例如,在句子“他将获得重组后的公司的股票”中,我们知道,根据牛津英语字典(NOAD)的定义,这一语境下,“股票”(stock)一词指的是“商业或公司通过发行和认购股份筹集的资本”。但是,在牛津英语字典中,stock 还有超过10种其他的定义,比如“商店中的货物”或者“中世纪一种用于惩罚的的工具”。对于计算机算法来说,区分这些含义非常困难,以致于这一任务过去通常被描述为“AI 完全问题”(AI-complete)。

为了进一步解决这一挑战,谷歌1月19日宣布,基于常用的MASC和SemCor 数据库的词义注释正式发布,这些注释是基于牛津英语词典人为注释的。谷歌还同时发布了从NOAD 词义到English Wordnet 转换的描述,这是一个在研究者社区更加常用的数据库。这是最大的全词义注释英语语料库之一。

监督式词义消歧

 分辨文本中的单词含义对于人类来说非常简单,因为关于世界是如何运转的、这些机制与语言有什么联系,我们已经积累了大量的常识。举例来说,在商业中,“stock” 指的是金融,而在商店中,“stock”更可能指货架上的商品,虽然商店从某种程度上来说也是商业的一部分。以机器可以使用的形式获取足够的知识,然后将其应用于理解文本中的单词,这是一个挑战。

监督式词义消歧(WSD)是使用人类标记的数据构建机器学习系统中的一个难题,该系统可以为文本中使用的所有词语对应词典义项(与实体消歧相反,它主要聚焦于名词,并且大部分是正确的) 。打造一个监督式模型,并且要比简单地分配最常见的词义而不考虑文本背景有更好地表现,这是相对更难的,但是,监督式模型在拥有海量的训练数据时,可以表现得更好。

谷歌工程师Colin Evans 和 Dayu Yuan 在博客上说,通过发布这一数据库,他们希望整个研究社区能够进一步改进算法,进而让机器更好地理解语言,让更多的应用成为可能:

比如:
 
推动从文本中自动构建数据库,以回答问题和联系文本中的知识。例如,理解“半引擎”是一种汽车机械,“机车引擎”是一种火车,或者“Kanye West是一个 star ”,意味着他是一个名人,但“Sirius 是一种star “意味着它是一个天文物体。消除搜索中的词语含义,使得“date palm ”和“date night ”或“web spam”和“spam recipe”在不同的场景下有不同的解释,并且从查询返回的文档具有相同搜索时蕴含的相同含义。

人工标注

在我们发布的人工标注的数据集中,每个义项的注释由5位评估者进行标记。为了确保义项标注的高质量,评估者首先使用金注释进行训练,也就是在开始标记注释任务之前,在一个单独的试验研究中,由经验丰富的语言学家进行标记。下图是我们的注释工具中,评估者工作页面的一个示例:



页面的左侧列出了单词的所有词典义项(这里以单词“general”为例),还提供了从词典中抽取的例句。例句中突出显示的是待注释词汇,显示在工作页面的右侧。除了为待注释词汇标注词典里的义项外,评估者还可以标注三种例外情况:(1)单词拼写错误;(2)词典义项中没有符合的;(3)无法确定。评估者可以检查该词在该句子里是否是一个比喻用法,并留下评论。

该语料库里的释义标注任务在评分者间信度评分(inter-rater reliability score)中得到 0.869 的分数,使用 Krippendorff 的 α 方法(α> = 0.67 被认为是可接受的再现性水平,α> = 0.80 被认为是高度可重复的结果)(Krippendorff,2004 )。注释计数如下表所示:

Wordnet 映射

我们的语料库还包括了从 NOAD 到 Wordnet 的两组映射。在一个2200词的较小型语料集中,使用与上述注释过程类似的方式进行人工的映射,并通过算法创建一个更大的集合。这些映射允许将 Wordnet 里的资源应用到 NOAD 语料库,并对使用 Wordnet 构建的系统使用该语料库进行评估。

有关使用基于LSTM的语言模型和半监督学习对这个语料库的完整研究结果,可以查看我们的论文“Semi-supervised Word Sense Disambiguation with Neural Models”


开源地址:github地址:https://github.com/dmorr-google/word_sense_disambigation_corpora
相关资讯
强强联合!英伟达50亿入股英特尔

英伟达投资50亿入股英特尔股票

​温补晶振(TCXO)核心技术解析:8大关键参数决定系统时序精度​

在高速通信、精准导航与精密测量等尖端领域,电子系统的时序架构对时钟信号稳定性的要求已近乎苛刻——其精度如同机械钟表的游丝摆轮,微小偏差便可能引发整个系统的时序紊乱,导致数据传输错误、定位偏移或测量失准。环境温度的波动一直是普通晶振频率稳定性的最大挑战,而温补晶振(Temperature Compensated Crystal Oscillator,简称TCXO)作为高精度时钟基准的核心器件,正是为解决这一核心问题而生。它凭借内置的“感知-计算-补偿”机制,在宽温环境下实现对频率的精准锁定,将温度变化引发的漂移压制在极低水平,成为高端电子系统中不可或缺的“时序锚点”。要真正理解并选型这一精密器件,就必须深入剖析其决定性能优劣的几个重要参数。

汽车BMS技术:动力电池的“智慧守护者”,全维度解密其核心优势与应用场景

本文将深入剖析汽车级BMS的核心技术优势及其广泛的关键应用场景

工业检测为何必须用工业相机?普通相机的四大核心短板解析

工业相机是根据工业检测的特殊需求进行深度优化与强化的专业设备

贸泽开售Renesas Electronics RA8P1微控制器 为先进AI提供高CPU性能

Renesas Electronics RA8P1微控制器可提供超过7,300 CoreMarks的CPU性能,以及在500 MHz时256 GOPS的AI性能