数字化冲击制造业,工业互联网孕育巨大机遇

发布时间:2018-06-15 阅读量:736 来源: 我爱方案网 作者: Miya编辑

工业互联网正在给传统制造业带来前所未有的冲击,越来越多的工厂开始数字化转型,运用人工智能、物联网、云计算和大数据等新一代信息技术将工厂升级到工业4.0,以获得快速应对市场的能力,并最大限度提升生产效率和节省成本。

近年来,受到人力和材料成本快速上涨等因素影响,制造业的利润空间越来越薄,加上全球经济放缓,在订单不稳定的形势下,稍有不慎工厂将会血本无归。因此,厂商开始寻找机器人等先进自动化技术来消除成本和提升产能。

还有,随着个性化需求的日益增长,工厂不仅要满足多样化的订制需求,还要对快速变化的市场有强大的响应能力。工业互联网打通了物理世界和虚拟世界的隔阂,制造业的所有参与者,包括用户消费者都可以通过智能手机、平板等终端设备去查看产品的生产进度,了解故障或突发事件以及获得准确发货、收货时间。


同样,工厂企业可以获得产品使用过程的数据,收集问题建议用于优化产品设计,甚至可以了解到消费者的喜好,并分析和评估下一个产品的方向,合理规划生产和及时准备原材料,从而减少资源浪费的风险,并能实现精益制造的效果。可以说,工业互联网带给制造业的是生产、销售、消费环节更加协调和高效的运营模式。

数字化制造革了谁的命?
数字化制造也称为工业4.0,是对制造业运营的重新思考,其主要目标是利用智能物联网技术提升工厂的动态响应能力。数字化工厂将使用大量的传感器,通过无线和有线网络连接大量生产设备和产品,可以实现生产流程和供应链的优化管理。

工业4.0通过物理信息系统,现实世界的物理对象和虚拟技术融合,从而让管理者可以更透明地掌握生产实时情况。这种信息系统可以应用到机器的预测性维护、资产管理、统计评估等,有效保障资产的可靠性,并可以延长资产的生命周期。

数字化将改变全球制造业的制造能力和价值形式,使用大数据分析、增材制造等技术减少劳动力投入,机器人将人力从一些重复性、无聊和危险的工作岗位就解放出来,同时先进设备提供了更高的效率和降低了企业运行的风险。


未来制造业将融合先进的自动化和信息技术,由人力工厂转变为智能的自动化机器工厂,这个过程将需要更多新技术装备、高科技和IT技术的支持。由于生产系统的复杂性,IT人员需要了解生产工艺,而操作人员将配合IT人员完成系统的升级,也就是说IT部门和操作部门关系将更密切。由于智能制造需要通过大数据分析去优化流程工艺,所以那些既会IT又懂工艺的高级人才将是未来趋势。

随着信息化与工业的融合发展,工厂企业可以分析出客户需求,提供个性化订制服务。客户可以时刻查看订单进度,了解生产的实际情况和反馈意见问题。工业互联网将企业与客户紧密连接在一起,这样就减少了沟通上的成本。传统企业在客服和销售环节的大量工作将逐步减少,这意味着企业不再需要配置大量的客户和销售人员。

中小企业如何升级互联工厂
工业互联网对企业的运营有着重要影响,通过物联网、大数据分析等技术可以增强制造水平,提高产品的质量和企业服务水准。不过要升级互联工厂可能要投入高级技术人才,这对于中小企业来说将是个难题目。此外,并不是升级生产系统就能带来价值提升,如果没有匹配企业的实际需求,那可能是做了一个错误的无益决定。

升级之前要对自身进行全面的评测,分析工厂效率低下的原因是什么,哪些环节存在问题,哪些资源没有合理利用。对生产流程、系统、人员和信息进行统计和分析,也可以和同类企业做比较,找出优点和缺点。然后,再根据自身情况来制定数字化转型的策略。

数据采集是一个关键,所以工厂需要投入大量的传感器,去监测生产过程各个环节的参数。这些传感器的连接可能需在用到无线通信技术,如NB-IoT、Lora等新一代无线技术。数据采集之后还要经过筛选、清洗,因为不准确的数据可能导致管理者作出错误的决策。

目前已经有不少企业提供强大的物联网联台,例如IBM公司推出的Watson IoT Platform云端服务平台等,该平台融入了人工智能技术,拥有强大的认知分析能力,提供数据和分析、预测、语义识别、存储等丰富的模块功能。Watson可以监控和分析工业过程中的电压、温度、故障历史以及环境条件,帮助企业有效减少资产停机时间。关于Watson的功能和应用安全可以查看近期IBM举行的“对话工业互联网在线研讨会”。

工业4.0模式下的创新机遇
随着设备的相互连接,机器与机器之间可以自由对话,将使得生产各个环节之间更加协调,最终整体效率大幅提升。其实,工厂所获得的好处不只是提升效率,工业4.0的模式为企业创造了很多可能,利用数据分析可以为企业提供增值服务。

在互联互通的大环境下,企业能更好地了解用户的真实需求,然后就可以主动向客户推广一些新的产品。在设备维护环节,通过远程监控和数据采集分析,厂商能够准确预测设备部件需要更换时间,并在合适的时间为客户提供二次服务。



未来,设备厂商可能考虑用出租机器的方式来服务客户。这样,客户只需要专心运营自己的生产即可,机器设备交给设备厂商管理和维护。对于设备厂商家来说,这样能获得更高的报酬,也意味着设备的管理更集中、更专业。

设备商通过采集不同地区的机器设备数据,形成丰富的数据历史记录,数据越丰富意味着在分析预测的结果可能越准确。同时设备商集中管理和维护设备,将可以进一步降低运营的成本。还有,利用机器学习等人工智能技术,可以帮助处理和分析大量的数据,并找到更大商业价值。

越来越多的企业和专家开始关注工业互联网,希望通过AI分析和预测帮助客户挖掘大数据背后的潜在价值。最近,中国信息安全研究院总工程师夏刚和走向智能研究院执行院长的赵敏,以及IBM大中华区Watson物联网事业部总经理李国志讲述了工业互联网核心技术、价值体现及解决方案,并探讨了传统企业逆袭的思路,有兴趣的朋友可以查看直播回顾《工业互联时代的传统企业逆袭》。

文章来源:OFweek工控网

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"