人工智能之AdaBoost算法

发布时间:2018-06-15 阅读量:1403 来源: 我爱方案网 作者: Miya编辑

人工智能之机器学习主要有三大类:分类/回归/聚类。今天我们重点探讨一下ID3算法。 


Hunt、Marin、和 Stone于1966年研制了一个概念学习系统CLS, 可以学习单个概念,并用此学到的概念分类新的实例。John Ross Quinlan(悉尼大学)于1983年研制了ID3算法。



ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。


ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。


ID3算法概念:
ID3(Iterative Dichotomiser 3),即迭代二叉树3代,该算法是一种贪心算法,用来构造决策树【请参加人工智能(23)】。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。



ID3算法核心:
ID3算法核心是“信息熵”。ID3算法通过计算每个属性的信息增益,认为信息增益高的是好属性,每次划分选取信息增益最高的属性为划分标准,重复这个过程,直至生成一个能完美分类训练样例的决策树。



ID3算法本质:

在信息论中,期望信息越小,那么信息增益就越大,从而纯度就越高。ID3算法本质是以信息增益来度量属性的选择,选择分裂后信息增益最大的属性进行分裂。该算法采用自顶向下的贪婪搜索遍历可能的决策空间。


在决策树的每一个非叶子结点划分之前,先计算每一个属性所带来的信息增益,选择最大信息增益的属性来划分,因为信息增益越大,区分样本的能力就越强,越具有代表性,很显然这是一种自顶向下的贪心策略。



ID3算法步骤:
计算各属性的信息增益,找出最大者为根节点 
1)先验熵:没有接收到其他属性时的平均不确定性;
2)后验熵:接收到输出符号Vj时关于信源的不确定性 ;
3)条件熵:对后验熵在输出符号集V中求期望,接收到全部符号后对信源的不确定性 ;
4)信息增益:先验熵与条件熵的差,是信宿端所获得信息量;
5)对剩余属性重复上述步骤。


ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定集合的测试属性。对被选取的测试属性创建一个节点,并以该节点的属性标记,对该属性的每个值创建一个分支据此划分样本。
具体算法流程如下:



ID3优点:
1)   算法结构简单;
2)   算法清晰易懂;
3)   非常灵活方便;
4)   不存在无解的危险;

5)   可以利用全部训练例的统计性质进行决策,从而抵抗噪音。


ID3缺点:
1)    处理大型数据速度较慢,经常出现内存不足;
2)    不能处理连续型数据,只能通过离散化将连续性数据转化为离散型数据;
3)    不可以并行,不可以处理数值型数据;
4)    只适用于非增量数据集,不适用于增量数据集,可能会收敛到局部最优解而非全局最优解,最佳分离属性容易选择属性值多一些的属性;
5)    没有对决策树进行剪枝处理,很可能会出现过拟合的问题。

注: ID3(并行)和ID3(number)解决了缺点3)的2个问题。


ID3应用场景:
决策树ID3算法是一个很有实用价值的示例学习算法,它的基础理论清晰,算法比较简单,学习能力较强,适于处理大规模的学习问题,是数据挖掘和知识发现领域中的一个很好的范例,为后来各学者提出优化算法奠定了理论基础。ID3算法特别在机器学习、知识发现和数据挖掘等领域得到了极大发展。

结语:

ID3算法是基本的决策树构建算法,作为决策树经典的构建算法,具有算法结构简单、理论清晰易懂、学习能力较强和灵活方便的特点。但也存在着不能处理连续型数据,不适用于增量数据集,处理大型数据速度较慢,可能会出现过拟合等缺点。ID3算法在世界上广为流传,得到极大的关注。ID3算法特别在机器学习、知识发现和数据挖掘等领域得到了极大发展。


文章来源:OFweek人工智能网

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"