什么是RFID?

发布时间:2011-09-29 阅读量:2079 来源: 我爱方案网 作者:

RFID简介
RFID(Radio Frequency IDentification):射频识别,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。

RFID技术的基本工作原理
RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者由标签主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。

一套完整的RFID系统, 是由阅读器(Reader)与电子标签(TAG)也就是所谓的应答器(Transponder)及应用软件系统三个部份所组成, 其工作原理是Reader发射一特定频率的无线电波能量给Transponder, 用以驱动Transponder电路将内部的数据送出,此时 Reader便依序接收解读数据, 送给应用程序做相应的处理。

以RFID 卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成, 感应耦合(Inductive Coupling) 及后向散射耦合(Backscatter Coupling)两种, 一般低频的RFID大都采用第一种式, 而较高频大多采用第二种方式。

阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和应答器之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。在实际应用中,可进一步通过Ethernet或WLAN等实现对物体识别信息的采集、处理及远程传送等管理功能。应答器是 RFID系统的信息载体,目前应答器大多是由耦合原件(线圈、微带天线等)和微芯片组成无源单元。

RFID的基本组成部分


标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象
阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式;
天线(Antenna):在标签和读取器间传递射频信号。

RFID技术简介
RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。

RFID是一种简单的无线系统,只有两个基本器件,该系统用于控制、检测和跟踪物体。系统由一个询问器(或阅读器)和很多应答器(或标签)组成。

RFID技术的典型应用
物流和供应管理
生产制造和装配
航空行李处理
邮件/快运包裹处理
文档追踪/图书馆管理
动物身份标识
运动计时
门禁控制/电子门票
道路自动收费
城市一卡通的应用
高校手机一卡通的应用。

RFID应用实例
2010年上海世博会门票采用RFID技术

近年来,在上海举行的会展数量以每年20%的速度递增。上海市政府一直在积极探索如何应用新技术提升组会能力,更好地展示上海城市形象。RFID 在大型会展中应用已经得到验证,2005年爱知世博会的门票系统就采用了RFID 技术,做到了大批参观者的快速入场。2006 年世界杯主办方也采用了嵌入RFID 芯片的门票,起到了防伪的作用。这引起了大型会展的主办方的关注。在2008 年的北京奥运会上,RFID 技术已得到了广泛应用。

2010 年世博会在上海举办,对主办者、参展者、参观者、志愿者等各类人群有大量的信息服务需求,包括人流疏导、交通管理、信息查询等,RFID 系统正是满足这些需求的有效手段之一。世博会的主办者关心门票的防伪。参展者比较关心究竟有哪些参观者参观过自己的展台,关心内容和产品是什么以及参观者的个人信息。参观者想迅速获得自己所要的信息,找到所关心的展示内容。

而志愿者需要了解全局,去帮助需要帮助的人。这些需求通过RFID 技术能够轻而易举的实现。参观者凭借嵌入RFID 标签的门票入场,并且随身携带。每个展台附近都部署有RFID 读取器,这样对参展者来说,参观者在展会中走过哪些地方,在哪里驻足时间较长,参观者的基本信息是什么等就了然于胸了,当参观者走近时,可以更精确地提供服务。同时,主办者可以在会展上部署带有RFID 读取器的多媒体查询终端,参观者可以通过终端知道自己当前的位置及所在展区的信息, 还能通过查询终端追踪到走失的同伴信息。


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。