什么是SoC FPGA软件开发虚拟目标平台?

发布时间:2011-10-20 阅读量:2156 来源: 我爱方案网 作者: benchen

运行Linux和VxWorks,支持面向Altera的SoC FPGA立即开始器件专用软件开发!

Altera公司宣布可以提供FPGA业界的第一个虚拟目标平台,支持面向Altera最新发布的SoC FPGA器件立即开始器件专用嵌入式软件的开发。在Synopsys有限公司成熟的虚拟原型开发解决方案基础上,SoC FPGA虚拟目标是基于PC在Altera SoC FPGA开发电路板上的功能仿真。虚拟目标与SoC FPGA电路板二进制和寄存器兼容,功能等价,保证了开发人员以最小的工作量将在虚拟目标上开发的软件移植到实际电路板上。支持Linux和VxWorks,并在主要ARM辅助系统开发工具的帮助下,嵌入式软件工程师利用虚拟目标,使用熟悉的工具来开发应用软件,最大限度的重新使用已有代码,利用前所未有的目标控制和目标可视化功能,进一步提高效能,这对于复杂多核处理器系统开发非常重要。

Altera公司产品和企业市场副总裁Vince Hu评论说:“为嵌入式工程开发应用软件通常需要占用很多的时间和工程资源。采用我们的SoC FPGA虚拟目标,我们帮助工程师迅速开始他们的软件开发,因此,他们提高了效能,使产品能够更迅速的面市。”
   
SoC FPGA虚拟目标以预构建、可立即使用的二进制和寄存器兼容PC仿真模型的形式提供,采用了相同双核ARM® Cortex™-A9 MPCore™处理器以及Altera Cyclone® V和Arria® V SoC FPGA的系统外设,还有电路板级组件,包括,DDR SDRAM、闪存和虚拟I/O等。为帮助实现面向硬核处理器系统和用户设计的基于FPGA的IP应用软件开发,Altera将为虚拟目标提供可选环路FPGA扩展功能。这一扩展功能使用了Altera FPGA开发电路板,通过PCIe®接口连接基于PC的虚拟目标。用户同时使用虚拟目标和环路FPGA扩展功能,在获得最终硬件之前,在处理器子系统中加入定制外设和硬件加速器,为它们开发器件驱动程序,与应用软件相集成。这样,能够以最小的工作量将器件专用固件和应用软件移植到实际硬件中。   
   
Synopsys有限公司IP和系统市场副总裁John Koeter评论说:“很多半导体和系统公司在获得硅片之前和之后,成功的使用了虚拟原型开发工具来加速软件开发。与Altera密切合作,在可立即使用的商用虚拟目标上采用成熟的虚拟原型开发技术,为系统和软件工程师提供环境,增强调试功能,这很容易在Altera的全球用户中推广。”   
   
虚拟目标最初的支持包括Linux和VxWorks。嵌入式软件开发人员可以使用经过预构建的Linux内核镜像,在SoC FPGA开发板主要组件器件驱动的支持下,能够立即启动虚拟目标的Linux。可以从Altera免费下载经过预构建的GNU工具链和Linux源代码。本季度还将为虚拟目标提供VxWorks电路板支持包(BSP),为其他嵌入式操作系统提供更多的BSP。
   
虚拟目标还专为仿真环境提供兼容辅助系统工具和其他的调试功能。支持虚拟目标的开发工具包括,GNU工具、ARM RVDS™、ARM开发Studio 5 (DS-5™)、Lauterbach TRACE32®调试器以及Wind River工作台。作为仿真模型,虚拟目标为待调试系统提供更多的可视化功能,支持用户更好的控制目标执行(特别是多核系统),实现在硬件上难以实现甚至无法实现的很多调试任务。  
   
ARM系统设计市场主任Mark Onions评论说:“现在对虚拟平台的需求越来越强烈,利用这一平台来加速软件开发,特别是基于ARM Cortex-A9 MPCore处理器的复杂设计。Altera的SoC FPGA虚拟目标结合ARM的RVDS和DS-5软件开发工具,支持开发人员尽早开始多核系统的设计,并迅速完成这些设计。”
   
Lauterbach GmbH公司总裁Stephan Lauterbach补充说:“我们看到越来越多的用户利用虚拟原型开发技术尽早开始他们的开发工作。TRACE32与虚拟目标的可视化和控制功能相结合,使多核调试发展到新水平,用户能够将其在开发过程中的工具和知识投入发挥最大效用。”

Wind River公司产品管理副总裁Warren Kurisu评论说:“与Altera在VxWorks和Linux上成功合作实现Altera软核处理器后,Altera新的SoC FPGA器件为嵌入式开发人员提供了更多的机会。结合Wind River丰富的系列产品,包括前沿的嵌入式软件操作系统以及世界级开发工具,这些投入将帮助嵌入式开发人员进行创新,满足嵌入式领域的各种需求。”

供货信息
现在可以从Altera那里订购SoC FPGA虚拟目标。计划明年上半年提供环路FPGA扩展功能。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。