热管原理
热管 ,是一种具有极高导热性能的传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到类似冰箱压缩机制冷的效果。具有很高的导热性、优良的等温性、热流密度可变性、热流方向酌可逆性、可远距离传热、恒温特性(可控热管)、热二极管与热开关性能等一系列优点,并且由热管组成的换热器具有传热效率高、结构紧凑、流体阻损小等优点。由于其特殊的传热特性,因而可控制管壁温度,避免露点腐蚀。但价格相对较高。
热管技术是1963年美国 LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决。
热管的基本工作
典型的热管由管壳、吸液芯和端盖组成,将管内抽成1·3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另— 端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程:
(1)蒸汽在冷凝段内的汽·液分界面上凝结:
(2)蒸汽腔内的蒸汽从蒸发段流到冷凝段;
(3)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段;
(4)热量从(汽--液)分界面通过吸液芯、液体和管壁传给冷源:
(5)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面;
(6)液体在蒸发段内的(液--汽)分界面上蒸发;
热管分类
按照热管管内工作温度区分
热管可分为低温热管(—273---0℃)、常温热管(0—250℃)、中温热管(250---450℃)、高温热管(450一1000℃)等。
按照工作液体回流动力区分
热管可分为有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体动力热管、渗透热管等等。
按管壳与工作液体的组合方式划分
(这是一种习惯的划分方法)可分为铜 —水热管、碳钢—水热管、铜钢复合—水热管、铝—丙酮热管、碳钢·荣热管、不锈钢·钠热管等等。
按结构形式区分
可分为普通热管、分离式热管、毛细泵回路热管、微型热管、平板热管、径向热管等。
按热管的功用划分
可分为传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等。
热管的基本特性
(1)热流密度可变性热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而以较大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题。
(2)恒温特性(可控热管)普通热管的各部分热阻基本上不随加热量的变化而变,因此当加热量变化时,热管备部分的温度亦随之变化。但人们发展了另一种热管——可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性。
(3)环境的适应性热管的形状可随热源和冷源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的,以适应长距离或冲热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。
(4)热流方向酌可逆性一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。此特点可用于宇宙飞船和人造卫星在空间的温度展平,也可用于先放热后吸热的化学反应器及其他装置。
(5)热二极管与热开关性能热管可做成热二极管或热开关,所谓热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。
(6)很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。当然,高导热性也是相对而言的,温差总是存在的,可能违反热力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外)。
(7)优良的等温性热管内腔的蒸汽是处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。