雷电及浪涌防护设计技巧

发布时间:2011-11-4 阅读量:1703 来源: 我爱方案网 作者:

雷电及浪涌防护设计技巧


雷电及浪涌电压电流具有极高的幅值,与具有极高内阻的电流源相近的电流特性,所有的防护措施都需要围绕这些方面展开。雷电及浪涌防护的基本原则是使雷电及浪涌所包含的能量按照预先设定好的方式和途径顺利的泄放。



根据大量的观测统计数据,IEC、IEEE、GB等标准体系做出了总结归纳,对雷电及浪涌保护工作做出了严格的规范,主要采用的方法包括接闪、均压连接、接地、分流、屏蔽和躲避。根据标准“IEC1312-1雷电电磁脉冲的防护”的介绍,首次雷击的电流为10/350μS,在建筑物保护级别为Ⅰ级时,设计需要防护的直接雷击的峰值电流为200kA。

当雷电直接击中建筑物时预计最大将有50%的雷电流经过与建筑物外部相联接的各种金属管线导体进入建筑物内部,每个导体上承受的电流等于总电流除以导体总数。如果导体被屏蔽良好的金属管道包复,在计算时认为有70%的电流被屏蔽层分摊。标准中还包括许多在防护工程设计施工时必须遵守的内容,我们在开展防护工作前应当充分熟悉这些技术标准。

为了同时满足设备运行与雷电防护的要求,所有防护设备都必须能够很好的解决正常状态与防护状态自动转换的问题。非线性元件具有的阶跃特性能很好的满足这些要求,所以防护设备中都包含有非线性元件,这些元件的性能对防护效果起着关键的作用。衡量防护元器件性能的主要指标有:

1、额定工作电压Un:防护元器件能保持高阻状态的电压,当防护元器件两端电压低于额定电压时对被保护线路和设备的影响很小。

2、残压(电压保护水平)Up:防护元器件在通过标称放电电流时两端的电压峰值。残压数值与与防护元器件的类型有关,与其额定工作电压的高低有关。

3、标称放电电流In:防护元器件能多次承受的放电电流,其数值与电流波形密切相关。

4、响应时间Ta:从施加电压至通过防护元器件两端的电压达到动作电压时所需要的时间。由于大部分防护元器件的动作电压(转折电压)定义点的电流是 1mA,所以也可以说响应时间是从施加电压至通过防护元器件的电流达到1mA时所需要的时间。

5、泄漏电流:在额定工作电压下,通过防护元器件的电流。泄漏电流与元器件的额定工作电压有直接的关系。

6、反向恢复时间trr:通过防护元器件的电流从正向转变为负向过程中的过零点至负向电流从峰值下降到规定数值时的时间。在高频和高速通信网络上使用的防护设备需要反向恢复时间较短的防护器件。

7、结间电容Cj:半导体防护元器件两端之间的电容。在高频和高速通信网络上使用的防护设备需要电容较低的防护器件。



相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。