隧道二极管

发布时间:2011-11-4 阅读量:2332 来源: 我爱方案网 作者: michelleli

什么是隧道二极管?

隧道二极管又称为江崎二极管,是一种在极低正向电压下具有负电阻的半导体二极管。 由于利用了量子力学隧道,因而它能够极快地发挥功效。它是以隧道效应电流为主要电流分量的晶体二极管。隧道二极管是采用砷化镓(GaAs)和锑化镓(GaSb)等材料混合制成的半导体二极管,其P型区和N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。

隧道二极管的原理

隧道二极管是以隧道效应电流为主要电流分量的晶体二极管。隧道效应,是指在两片金属间夹有极薄的绝缘层(厚度大约为1nm(10-6mm),如氧化薄膜),当两端施加势能形成势垒V时,导体中有动能E的部分微粒子在E<V的条件下,可以从绝缘层一侧通过势垒V而达到另一侧的物理现象。

由重掺杂的p区和n区形成的PN结即隧道结。n型半导体的费米能级进入了导带,p型半导体的费米能级进入了价带,在没有外加电压,处于热平衡状态时,n区和p区的费米能级相等。n区导带底比p区价带顶还低,因此,在n区的导带和p区的价带中出现具有相同能量的量子态。在重掺杂情况下,杂质浓度大,势垒区很薄,由于量子力学的隧道效应,n区导带的电子可能穿过禁带,到p区价带,p区价带电子也可能穿过禁带到n区导带,从而有可能产生隧道电流。随着长度越短,电子穿过隧道的概率越大,隧道电流越显着。

隧道二极管的工作符合发生隧道效应具备的三个条件:

①费米能级位于导带和满带内;
②空间电荷层宽度必须很窄(0.01微米以下);
③简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。

隧道二极管的主要参数

(1)峰点电压Up,约几十毫伏,谷点电压Uv,约几百毫伏
(2)峰点电流Ipi,约几毫安,谷点电流Iv约几百微安
(3)峰谷电流比,约为5-6,越大越好
(4)谷点电容Cv,几微法至几十微法,越小越好,国产2BS4A:Up=80毫伏,Ip=4毫安,峰谷电流比≥5,Cv=10~15微法,Uv=280毫伏。

隧道二极管的伏安特性

隧道二极管的伏安特性,如图(a)所示,是一条S型特性曲线。曲线中最大电流点P,称为峰点;最小电流点V,称为谷点。其电流和电压间的变化关系与一般半导体二极管不同。当某一个极上加正电压时,通过管的电流先将随电压的增加而很快变大,但在电压达到某一值后,忽而变小,小到一定值后又急剧变大;如果所加的电压与前相反,电流则随电压的增加而急剧变大。

隧道二极管的特点

隧道二极管的主要特点是它的正向电流-电压特性具有负阻。这种负阻是基于电子的量子力学隧道效应,所以隧道二极管开关速度达皮秒量级,工作频率高达100吉赫。隧道二极管还具有小功耗和低噪声等特点。

隧道二极管的应用

隧道二极管可用于微波混频、检波(这时应适当减轻掺杂,制成反向二极管),低噪声放大、振荡等。由于功耗小,所以适用于卫星微波设备。还可用于超高速开关逻辑电路、触发器和存储电路等。
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。