差压变送器原理

发布时间:2011-12-21 阅读量:3082 来源: 我爱方案网 作者:

差压变送器

所谓差压变送器,其实差压变送器是主要针对特殊的被测量介质设计和使用的,如果被测介质离开设备后会产生结晶,而使用普通型压力/差压变送器需要取出介质,会将导压管膜盒室堵塞使其不能正常工作,所以必须选用隔离型。隔离型变送器通常作成发兰式安装,即在被测设备上开口使变送器安装后它的感应膜片是设备壁的一部分,这样它不会取出被测介质,一般也不会造成结晶和堵塞。当被测介质需求结晶温度较高时,可选用将膜片凸出的结构,这样可将传感膜片插入到设备内部,智能压力变送器,这样测量是有保障的,即选用插入式发兰变送器。隔离型变送器有远传型和一体型之分。远传型即外膜盒与测量膜盒之间用加强毛细管连接,一般毛细管为3~5米,这样外膜盒装在设备上,内膜盒及变送器可以安装在便于维护的安装支架上;另一种形式是外膜盒与变送器做成一体直接由发兰安装在设备上。

差压变送器特点


1、精度高、温度影响小;

2、零点自动调整;

3、稳定性:微差压:±0.02[%]FS/年,普通差压:±0.025[%]FS/年;

4、控制参数密码锁定、确保安全;

5、测量量程比大;

6、软件补偿;

7、量程改变时可以不引入压力;

8、故障自诊断;

9、防水、防尘、防震、防爆、防腐;

10、线性、开方输出兼备;

11、现场总线HART协议通讯。

差压变送器中的是工业实践中最为常用的一种重量变送器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用差压变送器原理及其应用。

差压变送器的基本原理

是将一个空间用敏感元件(多用膜盒)分割成两个腔室,分别向两个腔室引入压力时,传感器在两方压力共同作用下产生位移(或位移的趋势),这个位移量和两个腔室压力差(差压)成正比,将这种位移转换成可以反映差压大小的标准信号输出。

实际构造中,敏感元件的结构,腔室的形式,位移转换的方式,标准信号的格式 都有很多种。

差压变送器结构原理
 
从压力和差压变送器制作的结构上来分有普通型和隔离型。普通型的测量膜盒为一个,它直接感受被测介质的压力和差压;隔离型的测量膜盒接受到的是一种稳定液(一般为硅油)的压力,而这种稳定液是被密封在两个膜片中间,接受被测压力的膜片为外膜片。原普通型膜盒的膜片为内膜片,当外膜片上接受压力信号时通过硅油的传递原封不动的将外膜片的压力传递到了普通膜盒上,测出了外膜片所感受的压力。
 
隔离型变送器主要是针对特殊的被测量介质使用的,如被测介质离开设备后会产生结晶,而使用普通型变送器需要取出介质,会将导压管和膜盒室堵塞使其不能正常工作,所以必须选用隔离型。隔离型通常作成法兰式安装,即在被测设备上开口加法兰使变送器安装后它的感应膜片是设备壁的一部分,这样它不会取出被测介质,一般不会造成结晶堵塞。
 
当被测介质需求结晶温度较高时,可选用将膜片凸出的结构,这样可将传感膜片插入到设备内部,从而感应到的介质温度不会降低,这样测量是有保障的,即选用插入式法兰变送器。
 
隔离型变送器有远传型和一体型。远传型即外膜盒与测量膜盒之间用加强毛细管连接,一般毛细管为 3~5米,这样外膜盒装在设备上,内膜盒及变送器可以安装在便于维护的支架上;另一种形式是外膜盒与变送器作成一体直接由法兰安装在设备上。对于隔离型压力变送器它还可以作成螺纹连接型,即外膜盒或外弹性元件可在安装螺纹的前面,只要在被测设备上焊接上内螺纹凸台,便可将变送器直接拧到设备上,安装非常方便。
 
隔离型压力/差压变送器的制作复杂,材质要求高,所以它的价格通常是普通型的3倍。
 

 


应变片差压变送器原理以及应用

力学变送器的种类繁多,如电阻应变片差压变送器、半导体应变片差压变送器、压阻式差压变送器、电感式差压变送器、电容式差压变送器、谐振式差压变送器及电容式加速度传感器等。但应用最为广泛的是压阻式差压变送器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。

在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变变送器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

差压变送器实际的工艺情况

①考虑被测对象是属于哪一类设备。如槽、罐类,槽的容积较小,测量的范围不会太大,罐的容积较大,测量的范围可能较大;

②要看介质的物化性质及洁净程度,首选常规的差压变送器及浮筒式,还要对接触介质部分的材质进行选择;

③对有些悬浮物、泡沫等介质可用单发兰式差压变送器。有些易析出、易结晶的用插入式双发兰差压变送器;

④差压变送器对高黏度介质的液位及高压设备的液位,由于设备无法开孔,可选用放射液位计来测量;

⑤除了测量方法上和技术上问题以外,还有仪表的投资问题

差压变送器选型方法
 
在压力/差压变送器的选用上主要依据:以被测介质的性质指标为准,以节约资金、便于安装和维护为参考。如被测介质为高黏度易结晶强腐蚀的场合,必须选用隔离型变送器。
 
在选型时要考虑它的介质对膜盒金属的腐蚀,一定要选好膜盒材质,否则使用后很短时间就会将外膜片腐蚀坏,法兰也会被腐蚀坏造成设备和人身事故,所以材质选择非常重要。变送器的膜盒材质有普通不锈钢、304不锈钢、316L不锈钢、钽膜盒材质等。
 
在选型时要考虑被测介质的温度,如果温度高一般为200℃~400℃,要选用高温型,否则硅油会产生汽化膨胀,使测量不准。
 
在选型时要考虑设备工作压力等级,变送器的压力等级必须与应用场合相符合。从经济角度上讲,外膜盒及插入部分材质比较合适,但连接法兰可以选用碳钢、镀铬,这样会节约很多资金。

暂时只介绍这四个方面,后续再了解。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。