人脸识别算法

发布时间:2012-01-9 阅读量:2704 来源: 我爱方案网 作者:

人脸识别算法

人脸识别技术中被广泛采用的区域特征分析算法,它融合了计算机图人脸识别像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。

基于LGBP的人脸识别算法


对于给定的人脸图像,LGBP方法首先将其与多个不同尺度和方向的Gabor滤波器卷积(卷积结果称为Gabor特征图谱)获得多分辨率的变换图像。然后将每个Gabor特征图谱划分成若干互不相交的局部空间区域,对每个区域提取局部邻域像素的亮度变化模式,并在每个局部空间区域内提取这些变化模式的空间区域直方图,所有Gabor特征图谱的、所有区域的直方图串接为一高维特征直方图来编码人脸图像。并通过直方图之间的相似度匹配技术(如直方图交运算)来实现最终的人脸识别。在FERET四个人脸图像测试集合上与FERET97的结果对比情况见下表。由此可见,该方法具有良好的识别性能。而且LGBP方法具有计算速度快、无需大样本学习、推广能力强的优点。

表.LGBP方法与FERET'97最佳结果的对比情况


基于AdaBoost的Gabor特征选择及判别分析人脸识别算法

人脸描述是人脸识别的核心问题之一,人脸识别的研究实践表明:在人脸三维形状信息难以准确获取的条件下,从图像数据中提取多方向、多尺度的Gabor特征是一种合适的选择。使用Gabor特征进行人脸识别的典型方法包括弹性图匹配方法(EGM)和Gabor特征判别分类法(GFC)。EGM在实用中需要解决关键特征点的定位问题,而且其速度也很难提高;而GFC则直接对下采样的Gabor特征用PCA降维并进行判别分析,尽管这避免了精确定位关键特征点的难题,但下采样的特征维数仍然偏高,而且简单的下采样策略很可能遗漏了非常多的有用特征。

三种不同的人脸建模算法比较示意图

基于SV的Kernel判别分析人脸识别算法sv-KFD

支持向量机(SVM)和Kernel Fisher分析是利用kernel方法解决线性不可分问题的两种不同途径,我们将二者进行了有机结合。我们首先证明了SVM最优分类面的法向量在基于支持向量的类内散度矩阵的前提下具有零空间性质,基于此定义了核化的决策边界特征矩阵(Kernelized Decision Boundary Feature Matrix,简写为KDBFM),最后利用基于零空间的Kernel Fisher方法计算投影空间。我们还进一步提出了融合类均值向量差及KDBFM来构建扩展的决策边界特征矩阵(EKDBFM)的方法,并把这两种方法成功地应用到了人脸识别领域,在FERET和CAS-PEAL数据库的实验结果表明该方法比传统人脸识别算法具有更好的识别性能。

基于特定人脸子空间的人脸识别算法

Eigenface是人脸识别领域最著名的算法之一,本质上是通过PCA来求取人脸图像分布的线性子空间,该空间从最佳重构的角度反映了所有人脸图像分布的共性特征,但对识别而言,这样的特征却未必有利于识别,识别任务需要的是最大可能区分不同人脸的特征。

“特征脸”方法中所有人共有一个人脸子空间,而我们的方法则为每一个体人脸建立一个该个体对象所私有的人脸子空间,从而不但能够更好的描述不同个体人脸之间的差异性,而且最大可能地摈弃了对识别不利的类内差异性和噪声,因而比传统的“特征脸算法”具有更好的判别能力。另外,针对每个待识别个体只有单一训练样本的人脸识别问题,我们提出了一种基于单一样本生成多个训练样本的技术,从而使得需要多个训练样本的个体人脸子空间方法可以适用于单训练样本人脸识别问题。在Yale Face DatabaseB人脸库对比实验也表明我们提出的方法比传统的特征脸方法、模板匹配方法对表情、光照、和一定范围内的姿态变化具有更优的识别性能。

如何实现脸部识别技术

在以往的拍摄中,如何处理人物和背景的关系一直是个麻烦的问题:如果人物不是在取景器的中间,相机就可能把焦点对在远处的背景,导致人物模糊;当人物和背景的亮度差别很大,则会导致人脸部曝光不足或过度。为了解决这些问题,专业的数码相机配备了“5点、9点”的对焦系统和“面测光、点测光、包围测光”测光系统,还要加上“AE/AF锁”。如此复杂的设置对拍摄者的经验和手指灵活性都是巨大的考验,而对于许多不具备这些功能的数码相机来说,拍摄者就完全束手无策了。脸部识别技术FaceDetection技术的出现,则让这个难题不复存在。这一技术能够让相机自动识别画面中是否有人的脸部,并自动将人脸作为拍摄的主体。然后,相机在对焦和曝光控制方面都将针对人脸的状况来调整。

这一智能功能带来两个最直接的好处:一是让摄影者更加集中精力在取景上,可以实现更完美的构图;二是提升了拍摄的速度。比如,富士的Facedetection脸部识别功能是基于硬件实现的,也就是在相机的处理芯片中有专门的集成电路来进行运算,每次处理的时间不到0.05秒,比起以往的“对准主体--半按快门――按AE/AF锁――取景”过程来,要快上不少,更适合抓拍的需要。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。