微波功率放大器

发布时间:2012-02-6 阅读量:5383 来源: 我爱方案网 作者:

微波功率放大器概述

S波段微波功率放大器是雷达发射机、无线通信、测量设备等系统的关键元件。微波功放的增益、输出功率、非线性等参数直接影响整个系统性能。S波段微波功率放大器研制的核心是大信号工作条件下功率放大器的输入输出宽带匹配电路的设计。大功率功率放大器的输出阻抗很低,一般在5 Ω以下,因而匹配电路的阻抗变换比很大,导致直接设计宽带匹配电路困难。同时,功放的交调、谐波等非线性也与其匹配电路有关,电路设计时必须综合考虑。

微波功率放大器关键在于输入输出匹配电路的设计。其功放匹配电路的设计可以采用近似线性的动态阻抗匹配、大信号S参数方法仿真,也可用谐波平衡法等非线性方法仿真。本文介绍了一种基于具有阻抗内匹配性质的场效应管设计的S波段功放,无需设计匹配电路,减少了优化设计的功放模块,因此缩短了研发周期,降低了设计成本,提高了技术指标。

微波功率放大器系统设计

微波功率放大器系统组成及原理

功率放大器系统的设计指标决定了其组成结构,设计线性功放设计的重点在于交调。分析三阶交调特性,忽略放大器的记忆性,其传输特性可用三阶泰勒公式近似表示为:

式中:Vout(t)为功放的输出电压,Vin(t)为功放的输入电压。当输人为双音信号,即Vin=A1cosω1t+A2cosω2t时,除了放大信号的频率分量ω1和ω2,放大器还产生落在频带内三阶交调分量2ω1-ω2和2ω2-ω1,令A1=A2=4,代入式(1),可得:

式中:IM3即三阶交调。三阶交调分量一般无法用滤波器滤除,必须选择合适的放大器和设计适当的匹配电路。由式(2)可以看出,功放的输人功率增加3dB,而三阶交调则回退6 dB。

选用FLM3135-18F单级增益为10 dB~15dB,为了满足指标所提出的25 dB,必须级联放大器。级联放大器的驱动级对末级输出的三阶交调由下式计算可得:

式中:dIM3是驱动放大器的IM3引人的功放输出IM3的变化量;IM3(driver)和IM3(final)分别表示驱动放大器和末级放大器的IM3(dBc)。

因此,由式(3)可得:


微波功率放大器第一级驱动放大器的设计

S波段FET的功率增益和集成功率放大器的增益一般为8 dB~12dB,为满足设计指标的输出功率要求,末级功放需加前级驱动放大。驱动放大器不仅要有足够的带宽、增益和输出功率,同时还要有足够高的线性度不至于对系统的交调、谐波产生影响。由式(4)可知,为使驱动级对总体的交调指标影响小于1 dB,在输出回退6 dB的测试条件下,IM3应小于-53 dBc。主要采取了两种措施保证其线性度:一是驱动放大工作在A类放大器。A类放大器的线性最好,不会引入大失真,同时工作在A类放大器的功率场效应管一般输入输出阻抗Q值低,易于宽带匹配;二是选用输出功率大于所需功率的高线性GaAs功率放大管,采取冗余设计。

驱动级放大管选用Motorola公司的1 W GaAsFET。放大器的匹配电路采用微带线和高Q值陶瓷电容的半集总电路形式,仿真用S参数近似GaAsFET的特性,然后再调整输出匹配电路。实际测得输出24dBm,驱动放大器的IM3小于-60 dBc,基本不影响系统的输出频谱。图1所示是驱动放大器的设计原理图。

 

 


微波功率放大器末级功率放大器的设计

一般窄带内的功放管阻抗参数已知,设计功放匹配电路是整个系统设计的关键。即设计一个两端口线性无源网络,一端口负载为50 Ω,另一端口的输出阻抗和功放管的输出输入阻抗共轭匹配。阻抗匹配的结果直接影响功放的输出增益和功率。为了达到理想的匹配效果,往往采用微带线和并联电容的混合网络实现功放的匹配电路,输人输出电路拓扑类似,采用低通电路结构。但是由于高功率GaAs FET的总栅宽很大,器件的阻抗很低,导致输入输出阻抗受封装寄生电容和电感的影响,在管壳外匹配放大器电路非常困难,特别是在高频,设计带宽功率FET放大器最直接的方法就是在微波封装内使用内匹配来解决器件的低输入阻抗问题。

S波段FLM3135-18F微波管场效应管,具有内部阻抗匹配网络,因此,设计时只需重点设计电源配置网络,而输入输出端可以利用集总元件和分布元件作为匹配网络。宽带和功率电平大于5 W时,通常选州集总元件作为功率FET的输入匹配电路,利用键合金属线实现集总电感,而电容则使用高介电常数陶瓷的金属"绝缘体"金属型。电容器的寄生电感和电阻必须小,并且具有足够的热和机械强度,小的温度系数,40V或更高的击穿电压。由于输出阻抗比输入阻抗高的多,输出匹配网络用集总和分布元件实现。图2是末级放大器的原理图。


微波功率放大器总结

带有内匹配电路的微波场效应管FLM3135-18F输人输出特性好,带内功率、增益特性平坦,元需要设计复杂的输入输出电路,电路可靠性高。最终实测结果达到设计指标,满足用户要求,已成功用于某型号目标识别与感知平台。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。