发布时间:2012-03-15 阅读量:4507 来源: 我爱方案网 作者:
什么是UDP端口?
所谓端口即英文port的义译,可以认为是计算机与外界通讯交流的出口。其中硬件领域的端口又称接口,如:USB端口、串行端口等。软件领域的端口一般指网络中面向连接服务和无连接服务的通信协议端口,是一种抽象的软件结构,包括一些数据结构和I/O(基本输入输出)缓冲区。 可以先了解面向连接和无连接协议(Connection-Oriented and Connectionless Protocols)面向连接和无连接协议(Connection-Oriented and Connectionless Protocols) 通信协议要么是面向连接的,要么是无连接的。这依赖于信息发送方是否需要与接收方联系并通过联系来维持一个对话(面向连接的),还是没有任何预先联系就发送消息(无连接的)且希望接收方能顺序接收所有内容。这些方法揭示了网络上实现通信的两种途径。
UDP规定,小于256的UDP端口才能作为保留端口。 按UDP端口号可分为3大类:(1)公认端口(Well Known Ports):从0到1023,它们紧密绑定(binding)于一些服务。通常这些端口的通讯明确表明了某种服务的协议。例如:80端口实际上总是HTTP通讯。 (2)注册端口(Registered Ports):从1024到49151。它们松散地绑定于一些服务。也就是说有许多服务绑定于这些端口,这些端口同样用于许多其它目的。例如:许多系统处理动态端口从1024左右开始。 (3)动态和/或私有端口(Dynamic and/or Private Ports):从49152到65535。理论上,不应为服务分配这些端口。实际上,机器通常从1024起分配动态端口。但也有例外:SUN的RPC端口从32768开始。 系统管理员可以“重定向”端口:一种常见的技术是把一个端口重定向到另一个地址。例如默认的HTTP端口是80,不少人将它重定向到另一个端口,如8080。
UDP端口简介
用户数据报协议(UDP)是 OSI 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。是一个简单的面向数据报的传输层协议,IETF RFC 768是UDP的正式规范。 UDP 协议基本上是 IP 协议与上层协议的接口。 UDP 协议适用端口分别运行在同一台设备上的多个应用程序。
由于大多数网络应用程序都在同一台机器上运行,计算机上必须能够确保目的地机器上的软件程序能从源地址机器处获得数据包,以及源计算机能收到正确的回复。这是通过使用 UDP 的“端口号”完成的。例如,如果一个工作站希望在工作站 128.1.123.1 上使用域名服务系统,它就会给数据包一个目的地址 128.1.123.1 ,并在 UDP 头插入目标端口号 53 。源端口号标识了请求域名服务的本地机的应用程序,同时需要将所有由目的站生成的响应包都指定到源主机的这个端口上。 UDP 端口的详细介绍可以参照相关文章。
与 TCP 不同, UDP 并不提供对 IP 协议的可靠机制、流控制以及错误恢复功能等。由于 UDP 比较简单, UDP 头包含很少的字节,比TCP负载消耗少
UDP适用于不需要TCP可靠机制的情形,比如,当高层协议或应用程序提供错误和流控制功能的时候。 UDP是传输层协议,服务于很多知名应用层协议,包括网络文件系统(NFS)、简单网络管理协议(SNMP)、域名系统(DNS)以及简单文件传输系统(TFTP)、动态主机配置协议(DHCP)、路由信息协议(RIP)和某些影音串流服务等等。
UDP协议端口结构
Source Port — 16位。源端口是可选字段。当使用时,它表示发送程序的端口,同时它还被认为是没有其它信息的情况下需要被寻址的答复端口。如果不使用,设置值为0。
Destination Port — 16位。目标端口在特殊因特网目标地址的情况下具有意义。
Length — 16位。该用户数据报的八位长度,包括协议头和数据。长度最小值为8。
Checksum — 16位。IP 协议头、UDP 协议头和数据位,最后用0填补的信息假协议头总和。如果必要的话,可以由两个八位复合而成。
Data — 包含上层数据信息。
UDP协议端口有如下的特点:
1、UDP传送数据前并不与对方建立连接,即UDP是无连接的,在传输数据前,发送方和接收方相互交换信息使双方同步。
2、UDP不对收到的数据进行排序,在UDP报文的首部中并没有关于数据顺序的信息(如TCP所采用的序号),而且报文不一定按顺序到达的,所以接收端无从排起。
3、UDP对接收到的数据报不发送确认信号,发送端不知道数据是否被正确接收,也不会重发数据。
4、UDP传送数据较TCP快速,系统开销也少。
5、由于缺乏拥塞控制(congestion control),需要基于网络的机制来减小因失控和高速UDP流量负荷而导致的拥塞崩溃效应。换句话说,因为UDP发送者不能够检测拥塞,所以像使用包队列和丢弃技术的路由器这样的网络基本设备往往就成为降低UDP过大通信量的有效工具。数据报拥塞控制协议(DCCP)设计成通过在诸如流媒体类型的高速率UDP流中增加主机拥塞控制来减小这个潜在的问题。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。