发布时间:2012-06-24 阅读量:4017 来源: 我爱方案网 作者:
涡流损耗
我们知道涡流是在导体内部形成的一圈圈闭合的电流线,而涡流损耗就是导体在非均匀磁场中移动或处在随时间变化的磁场中时,导体内的感生的电流导致的能量损耗。
涡流损耗的大小与磁场的变化方式、导体的运动、导体的几何形状、导体的磁导率和电导率等因素有关。涡流损耗的计算需根据导体中的电磁场的方程式,结合具体问题的上述诸因素进行。
置于随时间变化的磁场中的导体内,也会产生涡流,如变压器的铁心,其中有随时间变化的磁通,它在副边产生感应电动势,同时也在铁心中产生感应电动势,从而产生涡流。这些涡流使铁心发热,消耗电能,这是不希望有的。但在感应加热装置中,利用涡流可对金属工件进行热处理。
大块的导体在磁场中运动或处在变化的磁场中,都要产生感应电动势,形成涡流,引起较大的涡流损耗。为减少涡流损耗,常将铁心用许多铁磁导体薄片(例如硅钢片)叠成,这些薄片表面涂有薄层绝缘漆或绝缘的氧化物。磁通穿过薄片的狭窄截面时,涡流被限制在沿各片中的一些狭小回路流过,这些回路中的净电动势较小,回路的长度较大,再由于这种薄片材料的电阻率大,这样就可以显著地减小涡流损耗。所以,交流电机、电器中广泛采用叠片铁心。
增大涡流损耗的方法
1 涡流主要在铁芯的外表面,这是因为涡流本身产生的感应磁势能够阻止减少在铁芯内表面发生涡流的程度;
2 增加发热量的措施有:1)提高电源频率。因为涡流大小与频率称正比;2)增加通电线圈的输入功率;
涡流与集肤效应
涡流一方面产生磁心损耗,另一方面产生的涡流所建立的磁通阻止磁心中主磁通变化,使得磁通趋向磁心的表面,导致磁心有效截面积减少,这种现象称之为集肤效应.通常定义电流密度减少到导体截面表层电流密度的1/e处的深度叫做集肤深度Δ.一般选择磁心厚度小于穿透深度,这样就可以不考虑涡流引起的集肤效应.
减小涡流损耗的措施
仔细观察发电机、电动机和变压器会发现,它们的铁心都不是整块金属,而是用许多薄的硅钢片叠合而成.原来,把块状金属置于随时间变化的磁场中或者让它在磁场中运动,金属块内将产生感应电流,这种电流在金属块内自成闭合回路,因整块金属的电阻很小,所以涡流很大,损耗很大,发热严重.如变压器的铁心,当交变电流穿过导线时,穿过铁心的磁通量不断随时间变化,它在副边产生感应电动势,同时也在铁心中产生感应电动势,从而产生涡流.涡流使铁心大量发热,浪费大量的电能,效率很低.
如前所述,涡流相当于1匝的磁心线圈.涡流电阻取决于材料的截面尺寸和电阻率.为了减小涡流效应,将低电阻率的磁合金材料碾轧成薄带,将整块磁心用相互绝缘的n片薄带叠成相同截面积磁心替代.如果通过与整块磁心相同磁通时,每片仅通过总磁通的1/n.而对于每片的涡流电阻( R = ρ l /A, ρ-材料电阻率; A -整块磁芯截面积; l -整块磁芯涡流路径长度),薄带的截面积是整块截面的 A/n ;如果是正方形截面积,涡流路径最多比整块磁芯减少 1/2 ,每片包围的磁通为总磁通的 1/n .如果粗略估计,折算到激励线圈的涡流电阻比整块磁芯增加了 n 2 /2 倍.因此,用于交流的合金磁心总是用其相互绝缘的薄带料叠成的.
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。