ds18b20时序

发布时间:2012-07-4 阅读量:2439 来源: 我爱方案网 作者:


前一篇文章讲了ds18b20的工作原理,那么这篇文章我们就再来讲一下ds18b20时序。

ds18b20时序说明
 
新手在DS18B20读写过程中要犯很多错误。老衲普度众生,简要说明它怎么用。

1、过程1、2是初始化过程,每次读取都要初始化,否则18b20处于待机状态,无法成功读取。过程1:拉低信号线480-700us,使它复位,然后释放总线15-60us,18b20会拉低总线60-240us,然后它释放总线。所以初始化成功的一个标志就是能否读到18b20这个先低后高的操作时序。

(注意:黑色部分表示主机操作,蓝色部分表示18b20操作,每次主机操作完成之后等待18b20状态时,必须要释放总线,比如将IO设置为高阻态什么的。否则18B20没法把状态写到线上)

2、过程3、4是写1bit数据过程。过程3是写0 ,过程4是写1。过程3:拉低总线60us,然后抬高总线5us,完成。过程4:拉低总线5us,然后抬高总线60us,完成。

3、过程5、6是读1bit过程。过程5是读0,过程6是读1。过程5、6:拉低总线5us,然后释放总线,读取总线,如果为0,则读入0,如果为1,则读入1

DS18B20的时序描述

DS18B20的控制流程

根据DS18B20的通信协议,DS18B20只能作为从机,而单片机系统作为主机,片机控制DS18B20完成一次温度转换必须经过3个步骤:复位、发送ROM指令、发送RAM指令。每次对DS18B20的操作都要进行以上三个步骤。
复位过程为:单片机将数据线拉低至少480uS,然后释放数据线,等待15-60uS让DS18B20接收信号,DS18B20接收到信号后,会把数据线拉低60-240uS,主机检测到数据线被拉低后标识复位成功;

发送ROM指令:ROM指令表示主机对系统上所接的全部DS18B20进行寻址,以确定对那一个DS18B20进行操作,或者是读取某个DS18B20的ROM序列号。

发送RAM指令:RAM指令用于单片机对DS18B20内部RAM进行操作,如读取寄存器的值,或者设置寄存器的值。
具体的RAM和RAM指令请查阅DS18B20的数据手册,下面简单介绍:

1、ROM操作命令

DS18B20采用一线通信接口。因为一线通信接口,必须在先完成ROM设定,否则记忆和控制功能将无法使用。一旦总线检测到从属器件的存在,它便可以发出器件ROM操作指令,所有ROM操作指令均为8位长度,主要提供以下功能命令:

1 )读ROM(指令码0X33H):当总线上只有一个节点(器件)时,读此节点的64位序列号。如果总线上存在多于一个的节点,则此指令不能使用。

2 )ROM匹配(指令码0X55H):此命令后跟64位的ROM序列号,总线上只有与此序列号相同的DS18B20才会做出反应;该指令用于选中某个DS18B20,然后对该DS18B20进行读写操作。

3 )搜索ROM(指令码0XF0H): 用于确定接在总线上DS18B20的个数和识别所有的64位ROM序列号。当系统开始工作,总线主机可能不知道总线上的器件个数或者不知道其64位ROM序列号,搜索命令用于识别所有连接于总线上的64位ROM序列号。

4 )跳过ROM(指令码0XCCH): 此指令只适合于总线上只有一个节点;该命令通过允许总线主机不提供64位ROM序列号而直接访问RAM,以节省操作时间。

5 )报警检查(指令码0XECH):此指令与搜索ROM指令基本相同,差别在于只有温度超过设定的上限或者下限值的DS18B20才会作出响应。只要DS18B20一上电,告警条件就保持在设置状态,直到另一次温度测量显示出非告警值,或者改变TH或TL的设置使得测量值再一次位于允许的范围之内。储存在EEPROM内的触发器用于告警。

2、RAM指令

DS18B20有六条RAM命令:

1)温度转换(指令码0X44H):启动DS18B20进行温度转换,结果存入内部RAM。

2)读暂存器(指令码0XBEH):读暂存器9个字节内容,此指令从RAM的第1个字节(字节0)开始读取,直到九个字节(字节8,CRC值)被读出为止。如果不需要读出所有字节的内容,那么主机可以在任何时候发出复位信号以中止读操作。

3)写暂存器(指令码0X4EH): 将上下限温度报警值和配置数据写入到RAM的2、3、4字节,此命令后跟需要些入到这三个字节的数据。

4)复制暂存器(指令码0X48H):把暂存器的2、3、4字节复制到EEPROM中,用以掉电保存。

5)重新调E2RAM(指令码0XB8H):把EEROM中的温度上下限及配置字节恢复到RAM的2、3、4字节,用以上电后恢复以前保存的报警值及配置字节。

6)读电源供电方式(指令码0XB4H):启动DS18B20发送电源供电方式的信号给主CPU。对于在此命令送至DS18B20后所发出的第一次读出数据的时间片,器件都会给出其电源方式的信号。“0”表示寄生电源供电。“1”表示外部电源供电。

下面是结合实际测试总结出来的DS18B20的操作流程

1、DS18B20的初始化

(1) 先将数据线置高电平“1”。
(2) 延时(该时间要求的不是很严格,但是尽可能的短一点)。
(3) 数据线拉到低电平“0”。
(4) 延时490微秒(该时间的时间范围可以从480到960微秒)。
(5) 数据线拉到高电平“1”。
(6) 延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。
(7) 若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。
(8) 将数据线再次拉高到高电平“1”后结束。
  
2、DS18B20的写操作

(1) 数据线先置低电平“0”。
(2) 延时确定的时间为2(小于15)微秒。
(3) 按从低位到高位的顺序发送字节(一次只发送一位)。
(4) 延时时间为62(大于60)微秒。
(5) 将数据线拉到高电平,延时2(小于15)微秒。
(6) 重复上(1)到(6)的操作直到所有的字节全部发送完为止。
(7) 最后将数据线拉高。
  
3、 DS18B20的读操作

(1)将数据线拉高“1”。
(2)延时2微秒。
(3)将数据线拉低“0”。
(4)延时2(小于15)微秒。
(5)将数据线拉高“1”,同时端口应为输入状态。
(6)延时4(小于15)微秒。
(7)读数据线的状态得到1个状态位,并进行数据处理。
(8)延时62(大于60)微秒。

DS18B20时序图

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。