电磁铁制作

发布时间:2012-09-19 阅读量:2325 来源: 我爱方案网 作者:

电磁铁制作


什么是电磁铁

通电产生电磁的一种装置。在铁芯的外部缠绕与其功率相匹配的导电绕组,这种通有电流的线圈像磁铁一样具有磁性,它也叫做电磁铁(electromagnet)。我们通常把它制成条形或蹄形状,以使铁芯更加容易磁化。另外,为了使电磁铁断电立即消磁,我们往往采用消磁较快的的软铁或硅钢材料来制做。这样的电磁铁在通电时有磁性,断电后磁就随之消失。电磁铁在我们的日常生活中有着极其广泛的应用,由于它的发明也使发电机的功率得到了很大的提高。

电磁铁制作

电磁铁制作

电磁铁在吸合的瞬间,需要较大的电流,而在吸合后的保持期,仅需要较小的保持电流。结合电磁铁的这一特点,笔者开发了具有吸合、保持功能的双线圈电磁铁。

电磁铁制作
 
电路中,D1为整流二极管,D2、D3是续流二极管。U1为BT33,触发用的单结晶体管、R1限流电阻等。L1是保持线圈,用φ0.2mm漆包线绕制,直流电阻290Ω;L2是吸合线圈,用Φ0.51mm漆包线绕制,直流电阻19Ω。U1与R1共同构成吸合线圈的控制电路,C1、V4、N2等构成延时控制电路。

由AC_A和AC_C输入380V交流电压,经D1半波整流和R1限流后为控制系统供电。系统得电后,保持线圈L1得电1作,同时经R1和R2为E1充电。在通电初始时期,C1电压小于1.5V,晶体管N2处于截止状态,R5、C2和U1构成的可控硅触发电路工作,使可控硅T1导通,吸合线圈L2也工作。大约0.4s后, C1的电压上升到大于1.5V时,晶体管N2导通,使U1的基极电压低于工作电压,可控硅触发电路停止工作,T1断开,L2因失电而停止工作。在通电最初的0.4s内,L1、L2同时工作,吸合力最大。此后,仅L1工作,维持系统的吸合。改变R5和C2的值,可调整L2的工作电流。

电磁铁制作

U的开口距离大一些或使长度长一些,以便能多绕些漆包线,且线径能较大一些,以便能通过较大的直流电,同时要注意绕线方向必须使U形的端口成为一个是N极另一个为S极,其目的都是为了达到能在200mm的距离上吸起重达10公斤左右铁质金属,如达不到可通过调节电流、线圈扎数、或U形横截面积等适当调节,当然要结合实际,根据需要与可能进行。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。