滤波电感的意义?

发布时间:2012-11-20 阅读量:1554 来源: 我爱方案网 作者:

 简介


大家都知道
随着开关电源类的数字电路的普及和发展,电子设备辐射和泄漏的电磁波不仅严重干扰其他电子设备正常工作,导致设备功能紊乱、传输错误、控制失灵,而且威胁着人类的健康与安全,已成为一种无形污染,并不逊色于水、空气、噪声等有形污染的危害。因此降低电子设备的电磁干扰(EMI)已成为世界电子行业关注的问题。

从磁性材料的角度指出了共模与差模抗干扰滤波器中电感材料的选择原则。指出必须根据干扰信号的类型(模或差模)选取对应的磁性材料,并按照所需抑制频段研制该材料的磁性能,使之适合该抑制频段需要,只有这样才能得到最佳的抗干扰效果。最后本文指出由于开关电源的微型化,促进抗干扰电感器件向片式化和薄式化的发展。

                                     

 

                                图1、滤波器电感

          

滤波电工作原理

当流过电感的电流变化时,电感线圈中产生的感生电动势将阻止电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。

因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。只有在RL>>ωL时才能获得较好的滤波效果。L愈大,滤波效果愈好。另外,由于滤波电感电动势的作用,可以使二极管的导通角接近π,减小了二极管的冲击电流,平滑了流过二极管的电流,从而延长了整流二极管的寿命。


滤波电
感分类

差模滤波电感材料的选择与共模滤波电感完全不同,因为电感与负载是串联,输入电流或输出电流直接通过电感磁芯,其交流(直流)电流很大,当然不能用高磁导率的材料。为了适应差模抗干扰滤波器的电感磁芯的需要,最初采用铁氧体或金属磁性材料开气隙增加退磁场方法,降低磁导率,增加磁芯抗饱和能力。但这对用于电源输入端的交变电流抗干扰滤波显然是很不恰当的。不仅在开气隙处有很强的交变漏磁场引起的很大辐射干扰外,还在气隙断口处产生局部的损耗而发热,导致铁氧体磁性恶化甚至消失。

                 
 

                                 图2、共模滤波电感

因为铁氧体居里温度为200,在此温度附近μ0降低至零,此时已失去滤波作用。再者由于磁致伸缩在气隙处产生新的机械噪声,污染环境。为此人们采用新颖的复合磁粉芯。这是目前最理想的滤波电感材料,它是将金属软磁粉末经绝缘包裹压制退火而成,它相当于把一集中的气隙分散成微小孔穴均匀分布在磁芯中,不但材料的抗饱和强度增加,而且磁芯的电阻率比原来增加几个数量级且各向同性,改变了金属磁性材料不能在高频下使用的缺点。这就是在国外所有差模滤波电感都是用磁粉芯,而不用开口铁氧体磁芯的原因。

发展趋势

当前电子线路向高速数字电路转移。高组装密度和高运算速度对EMC提出更高的要求。电子产品的微型化、多功能、移动化的发展又促使电子产品在组装方式上向表面贴装技术转移,又进一步降低干扰。同时为了提高其动态响应,降低干扰,必须力求减小供电母线的引线电感。最有效的方法是将电源直接装在负载附近,用分散供电方式(即小功率源)而不采用集中供电的形式(大功率源),这样大大减少引线的长度有效降低辐射干扰。

可见,片式磁性器件是微型化的关键材料之一,它可分为线绕型片式电感、叠层型片式电感、薄膜型片式电感。为此上海钢铁研究所已开始着手金属薄膜电感和薄膜变压器元件的研制。目前美国和日本的一些重要研究所都开始研究薄膜电感和薄膜变压器,并与集成元件组合制成新颖的超小型、高可靠性、高抗干扰能力的电源模块。由此可见超小型电感和变压器将是21世纪磁性元件的发展方向。

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。