什么是ESD保护

发布时间:2012-12-18 阅读量:2417 来源: 我爱方案网 作者:

什么是ESD保护


ESD保护定义

ESD(Electro-Static discharge)的意思是“静电释放”。ESD是20世纪中期以来形成的以研究静电的产生、危害及静电防护等的学科。因此,国际上习惯将用于静电防护的器材统称为ESD,中文名称为静电阻抗器。

ESD事件描述

ESD事件是由根据充电过程类型和瞬态电泳严重程度的三种主要ESD算法描述的:人体模型(HBM)、充电器件模型(CDM)和机器模型(MM)。这些模型定义了瞬变效应的类型,因此设计工程师们就可以定义明确的半导体过压芯片瞬变等级灵敏度,以及芯片及装配产品测试规程。利用这些模型,电路设计工程师可以测试芯片和产品的ESD保护效率相一致,而且可以定量地与可选方案进行比较。

电荷通过一系列电阻器直接传递,例如人的手指,是最普遍的ESD损坏原因。因此,优秀的ESD模型是HBM。在测试中待测器件中(DUT),这是由一个100pF的电容通过一个1500Ω的电阻向器件放电来表示的。这个标准的商业版本是军用规范883方法3015(图1a)。

最流行的HBM变种是国际电工委员会IEC1000-4-2标准,定义为150pF电容通过一个330Ω电阻放电(图1b)。这是欧盟对在其区域内商品销售所必须的国际测试。

ESD事件描述
图1:ESD事件描述

ESD保护和雷击保护

雷击事件所产生的噪声是属低频(事件长度为20usec以上)但能量却很大的噪声,所以雷击保护组件的设计都着重在能宣泄大能量噪声,而非其反应速度上。ESD(静电放电)事件所产生的噪声是属高频(事件长度为60nsec以内)但能量很小的噪声,所以ESD保护组件的设计必须着重于其反应速度上,唯有反应速度在10nsec以内的保护元件才有ESD防护效果。

雷击保护元件的设计挑战在于要在有限的元件体积下,能宣泄最大能量的雷击噪声,元件材料的选择是设计重点。ESD保护元件的设计挑战则是在设计元件的快速反应速度与反应后的低导通阻抗,唯有如此才能提供低箝制电压来保护系统的正常运作,而此类元件的设计重点会是在元件结构及其所用的工艺上。

视频接口的防雷过压和ESD保护
图2:视频接口的防雷过压和ESD保护

高速电路的ESD保护

快速ESD脉冲可能在电路板上相邻(平行)导线间产生感应电压。如果上述情况发生,由于将不会得到保护,因为感应电压路径将成为另一条让浪涌到达IC的路径。因此,被保护的输入线不应该被放置在其它单独、未受保护的走线旁边。推荐的ESD抑制器件PCB布局方案应该是:放置在被保护的IC之前,但尽量与连接器/触点PCB侧尽量近这; 放置在与信号线串联任何电阻之前; 放置在包含保险丝在内的过滤或调节器件之前; 放置在IC之前的其他可能有ESD的地方。

ESD电路保护
图3:ESD电路保护
相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。